

Biogasdoneright[™]

A Sustainable System for Large Scale Bioenergy Production

Bruce E. Dale, University Distinguished Professor Michigan State University

Global Methane Forum Toronto, Canada April 17, 2018

(Renewable) Energy is Critical for Long-Term Human Wealth and Well Being

- 1. Rate of energy use (*rate of doing work*) determines our wealth and opportunities for human development
- 2. Many people seem ignorant of this basic fact: *energy use makes us prosperous...lack of energy will make us poor!!*
- 3. Current prosperity is based largely (~85%) on finite fossil fuels thus our prosperity has an "expiration date"- it will end!
- Lack of energy access condemns billions of human beings to poverty—and will also impoverish future generations of those who are currently wealthy <u>unless</u>....
- 5. We implement sustainable, terawatt scale renewable energy systems—in the next few decades
- 6. Bioenergy is an essential part of a renewable energy future
- 7. Thus farmers—those who own and manage land--must benefit from and participate in bioenergy production

Energy Consumption and Wealth: A Linear Relationship

Energy Consumption & Human Well Being are Linked: How Much Energy is "Enough"?

Figure 1. Human Development by Country versus Per Capita Power Consumption in 2010

Emissions Reduction is <u>Not Enough</u>: We Need Large Scale <u>Negative Emissions</u>

Agriculture and Biofuels: we must ask the right questions

X The current approach to bioenergy production is to impose a large new demand for bioenergy on an existing agricultural system that otherwise does not change

This approach is short-sighted and often self-defeating

- We should be asking: Can we <u>redesign</u> agriculture around the world to produce bioenergy, food/feed & large environmental benefits?
- X Agriculture has changed before; *it can, should (and must) change again—and farmers are key to that change*
- Kerket Biogasdoneright™ is a new paradigm ("business model") for sustainable, large-scale bioenergy production.
 CREAT GAKES BIOENERGY

Biogasdoneright[™]

Guiding Principles: "Biogasdoneright™"

- Grow regular crop for feed/food market– no "food vs. fuel" conflict
- Grow and <u>then ensile</u> a double crop to feed the anaerobic digesters (plus manure and other locally-available "wastes"—whatever is available and fits)
- K Burn biogas on site to generate dispatchable electricity for power grid and/or purify and then export and store biomethane in the natural gas grid—thus meeting needs for dispatchable electricity and heating/cooking
- Convert biomethane to compressed natural gas (RNG) or liquid natural gas (LRNG) to meet transportation fuel needs
- Apply innovative, sustainable farming methods using <u>existing technologies</u>:
 - Fertilize fields with digestate liquid using GPS systems → reduce purchased fertilizers (and associated GHGs) → reduce irrigation water
 - Apply the digestate solids using GPS → rising soil carbon levels → increased fertility and farm productivity → low cost biological carbon capture & storage (BECCS)
 - Result: improved farm profitability—increased farm income and resilience, reduced expenses, better environmental performance

9

Example: Iraci Farm on the banks of the Tiber River near Assisi, Italy

10

DOE Bioenergy Research Centers

U.S. DEPARTMENT OF

www.glbrc.org

Installed biogas plants in Italy

www.glbrc.org

S. DEPARTMENT O

NERG

DOE Bioenergy Research Centers

Biogas & Biogas Derivatives: the most flexible renewable fuels

Services Provided by Renewables	ELECTRICITY			BIOFUELS		
	Wind	Solar	Biogas	Bioethanol, Biobutanol, Biodiesel	Biomethane (RNG)	Liquified Biomethane (LRNG)
Power	•	•				
Heating and Cooling	٠		•			
Mobility: Ground	•	٠	•		٠	
Mobility: Sea					•	

ENERGY

DOE Bioenergy Research Centers GREAT LAKES BIOENERGY

Storing Electricity vs. Natural Gas: Some Comparisons

CAPITAL COST OF PUMPED HYDRO TO EQUAL EXISTING NATURAL GAS STORAGE \$300 - 450 QUADRILION

Anaerobic Digestion

Animal Wastes

Biogasdoneright™

Waste Treatment Limited Scale

Produces Food and Low Carbon Energy Large Scale Increased Soil Organic Carbon Improved Farm Economics Widely Applicable **Nutrient Recycle**

Large Scale "Food vs. Fuel" Conflict

ONE DOUBLE CROP EXAMPLE: *TRITICALE AND TOMATO*

Two Cropping Cycles: Conventional vs. Biogasdoneright[™]

ENERGY

Applying Digestate to Maize Crop

Three Biogasdoneright[™] Case Studies from Real Farms: GHG Emissions Comparison with Conventional Biogas

1 MAIZE	1000 kW	100% Maize
2 CRP+MAN	1000 kW	11% Residues 20% Livestock Effluents Crop
3 MAN+CRP	600 kW	8% Primary & 92% Livestock Effluents Crops
4 BYPR+MAN	500 kW	52% Livestock Effluents 42% Residues Crops

www.glbrc.org

DOE Bioenergy

Research Centers

. DEPARTMENT OF

GREAT LAKES BIOENERGY

Farm Level Benefits of Biogasdoneright[™]

DOE Bioenergy NERGY **Research Centers**

Bioenergy forgot about the farmers... (oops!!)

- The emerging circular bioeconomy will not grow strongly <u>unless</u> farmers benefit
- We need to get serious about incentivizing/involving farmers
- Farmers will manage land for feed & food, <u>energy &</u> <u>environmental services</u>
- Using BDR, farmers can hedge energy production & food production to give themselves better economic outcomes & greater benefits to society

Some Concluding Thoughts

- Energy use (power consumption) is critical to human prosperity and well-being
- Without sustainable, large scale energy sources, we will not have sustainable, large scale prosperity— we must act soon using available, scalable, sustainable technology
- We cannot limit GHGs without involving farms and the farmers who manage land to reduce emissions and sequester carbon
- Agriculture can provide food, feed, and large sustainability services, if redesigned to do so.
- Coproducing food & energy will stabilize food/energy prices, give farmers (and society) more options and make farming more resilient
- X Biogasdoneright™ is making progress in Europe... <u>we need a</u> <u>commercialization leader-CEO- for North America</u>

ENERGY DOE Bioenergy Research Cent

The Ideal CEO to Advance Biogasdoneright™ in North America

- MSc in Agriculture, PhD in bioenergy or engineering
- Five years working experience in agricultural research and/or in sustainable agriculture and/or agricultural co-ops
- Fluent in English and at least one other language, pref. Spanish
- Good presenter, eloquent and convincing
- Good organizational skills, good at creating teams
- > Previous experience leading a start-up would be great asset!
- Dedicated, hard worker and fast learner
- Share our vision of large scale, sustainable bioenergy based on Biogasdoneright^m principles

