Global Methane Forum Washington DC 28-30 March 2016

Gas from sealed areas – a hazard or resource?

by Dr D P Creedy Sindicatum Sustainable Resources Vice-chair UNECE Group of Experts on CMM

Global mine gas resource

Mine gas in the life cycle of coal mining

Mining cycle	Gas exploitation	Gas composition
Exploration	CBM from surface wells	Mainly CH4
Development	Pre drained CMM	CH4 + air
Production	Post drained CMM	
Sealing	SAM	CH4 + air + N2 + CO2
Mine closure	AMM	CH4 + N2 + CO2
		2

Basic concepts – gas release from longwall mining

What is Sealed Area Methane (SAM)?

From Lunarzewski

What is Sealed Area Methane (SAM)?

From Lunarzewski and Creedy, 2006

SAM resources and reserves

 SAM resource = residual volume of gas available in un-mined coal and void spaces

 SAM reserves = gas recoverable at commercial flow rates at a suction pressure that can be applied without inducing significant increase in CO and O2 concentrations. Flooded areas are excluded.

Why seal off mined-out areas?

Atmospheric pressure rising

Atmospheric pressure falling

Control of sealed areas creates best conditions for methane recovery

- Good standard of sealing high quality gas
- Gas and water monitoring good data for planning
- Underground gas drainage or surface venting arrangements – gas production facility

Feasibility of SAM extraction and use

SAM resources & reserves

- Residual gas content of coal seams
- Quantity of unworked coal comprising the gas reservoir
- Dimensions of the sealed area
- Water inflows
- Gas quality

Feasibility of SAM extraction and use

Gas extraction

- Access to sealed areas underground, surface borehole, shaft
- Methane drainage capacity
- Expertise and skills in gas extraction and use

Feasibility of SAM extraction and use

Commercial and legal factors

- Gas and power price
- Accessibility of market pipeline, customer, grid connection
- Carbon revenues
- Ownership of the gas and land access rights

Revenue from SAM

Where are the opportunities?

Extensive sealed areas in working, gassy, longwall mines represent potential mine gas production opportunities.

Where mining depths are relatively shallow SAM can be accessed easily from surface boreholes drilled into abandoned mine roadways.

Conclusions

Sealed Area Methane (SAM) is similar in origin to Abandoned Mine Methane (AMM).

The difference is in the accessibility and controllability of the gas for SAM compared with AMM.

Conclusions

SAM is a potential asset that can provide :

- Additional value from mining using proven technology
- -Clean energy
- Carbon revenues from emissions mitigation

Conclusions

Attention to SAM production detail will reduce sealed area explosion risk and vice versa

For further information please email:

<u>david.creedy@sindicatum.com</u>

Thank you for listening