Gas engine solutions for low BTU Applications

CMG-, Biogas-, Sewage Gas-, LFG to Energy

Gerhard Pirker Marketing Program Manager GE Energy Jenbacher gas engines

M2M Partnership Expo New Delhi, March 2010

Overview of low BTU Applications

- Low BTU gases result from different processes
- Still, there are several similarities as far as gas engines are concerned
- Gas engine manufacturer provide integrated solutions
- Auxiliaries not necessarily part of supply scope, but 'turnkey thinking'

Leachate Vaporisation

Exhaust gas

treatment (CL.AIR)

Gas cleaning (TSA)

27

Exhaust gas

Challenges

- Low BTU, high inert fractions (CO2/N2)
- Gas humidity & dust
- BTU, O2 and pressure fluctuations
- Sulfur and other Impurities
- Siloxanes (Silicon Compounds)
- Emission compliance
- CDM/JI approval, PDDs
- Capacity adaption, shift
- Less experienced O&M staff

Solution

- Special design and ignition system
- Gas conditioning support
- LEANOX[®], DIA.NE[®], gas mixer, TCB
- Special materials and design
- Gas cleaning: TSA, activated carbon
- CL.AIR[®], TSA
- Methane Monitoring & other support
- Modular, compact, broad range
- Special support, flexible CSAs

/ Solutions for low BTU gases March 2010

Dealing with low BTU gases

- Special gas train lay-out
- Special gas mixer
- Special turbocharger
- Special geometry of
 - combustion chamber &
 - piston head
- Special spark plugs & ignition system

>> Gas mixture in the combustion chamber is finally about the same as in NG operation >> Optimal combustion despite low laminar flame-speed

Gas compositions of GE Jenbacher plants

GE Jenbacher gas conditioning support

Landfill Gas

Jenbacher support fully synchronized with gas engine

Engine fuel

The quality of the gas conditioning has a big influence on the availability of the gas engine

GE supports with basic design, component specifications and subcontractor evaluation for effective gas conditioning

Workflow & Basic Design

Fast Changing CH₄ Content

Facts

- CH₄-Concentration is changing faster than 11.5Vol%/30s
- Only small Load Fluctuation – Engine operation is still stable
- LEANOX control system
- Fast Reaction of Gas Mixer
- Longest experience with turbo charger bypass system

Optimal compensation of fluctuations increases gas engine availability and components lifetime and also reduces investment in the gas supply (buffer tank e.g.)

GE Jenbacher LEANOX[®] + DIA.NE[®]

LEANOX[®] together with DIA.NE[®]

- enables smooth and automatic engine start and operation
- avoids thermal and mechanical stress
- extends lifetime of valves, cylinder heads and spark plugs
- keeps NOx emissions always below the limit

Performance data of existing plants

COUNTRY	PLANT	DATE	CH ₄ -RANGE	REFERENCE VALUE	$\begin{array}{c} \textbf{Max} \ \Delta \ \textbf{CH}_{\textbf{4}} \ \textbf{in} \\ \textbf{30sec} \end{array}$
Australia	J C555 Oaky Creek JGS320	21.01.2008 - 22.02.2008	81 - 95	96	2
China	J D448 YangQuan ShentangZui JGS620	01.05.2008 - 29.05.2008	30 - 41	39	4
Germany	J B321 Grubengas Fenne JMS620	23.06.2008 - 08.07.2008	33 - 70	57	11,5
Germany	J B475 Grubengas Walsum JGC420	29.04.2008 - 29.05.2008	33 - 53	-	8
Great Britain	J A836 Stillingfleet JGC420	29.04.2008 - 29.05.2008	30 – 55	65	10
Great Britain	J D703 Stillingfleet 2006 JGS620	27.04.2008 - 29.05.2008	80,5 - 83	65	2,5
Great Britain	J A839 Maltby JGC420	01.05.2008 - 29.05.2008	26 - 48	36	8
Great Britain	J A841 Kellingley JGC420	02.05.2008 - 29.05.2208	26 - 50	-	8
Great Britain	J A843 Welbeck JGC420	27.04.2008 - 29.05.2008	25 - 44	-	8
Ukraine	B617 Sasyadko JMS620	02.09.2007 - 04.10.2007	25 - 42	36	12

Sulfur and other impurities

Measures:

ΣS

- anti-corrosive engines parts (bearings, valves)
- robust construction
- special scraper rings
- special Biogas heat exchanger

- Cooling down to 180°C or 220°C
- no pipes at the bottom > no condensate
- big condensate trap (DN50)

- < 2000 mg/100% CH4 & "modified" maintenance schedule

Volatile Organic Silicon Compounds (VOSCs)

Increasing VOSC impurities in LFG and Sewage Gas

- Industrialization process >> MSW fractions increasingly contain siloxanes
- Biodegradables deposited separately
- VOSCs appears in the early phase of fermentation/ subtropical climate speeds up process
- >> In all LFG to energy growth regions some VOSC load must be expected in the next 3-8 years

VOSC considerably increase O&M costs

- Deposits cause lower availability and higher maintenance costs (oil, de-coking, NNG schedule)

VOSC hamper emission compliance

- Wear is responsible for CO/NOx drift
- Already low VOSC levels destroy catalyst

Sewage Gas: total VOCs (Volatile Organic Compounds) load lower >> fix bed activated carbon sufficient

/ Solutions for low BTU gases March 2010

GE imagination at work

Temperature Swing Adsorber (TSA)

TSA allows automatic thermal regeneration of activated carbon filter on LFGTE site >> filter lifetime up to 8,000 Oh

- Add. availability LFG to energy plant
 > additional electricity revenues
- Increased output
- Reduced lube oil & spark plug consumption
- Less preventive maintenance (NG schedule)
- Less corrective maintenance (de-coking a.o.)
- Enables catalyst operation

CL.AIR - exhaust gas after-treatment

- Synchronized with engine maintenance schedule

GE Jenbacher carbon meter support

Plant size Engine type Gas conditions PDD methodology Safety regulations Site conditions Jenbacher support fully synchronized with gas engine

A complying, accurate and easy to maintain carbon meter for monitoring methane mitigation is key for a successful carbon trading

Broad range of mobile/ compact units

Product line 2010 (50Hz) – $NO_X \leq 500 \text{ mg/m}^3_N$

Optimal service solution

- For project owner/ operator of CMG/ LFG ... plant, this is not core business
- Running and maintaining the gas collection system is often already a big challenge
- Site conditions not comparable with Natural Gas plant

>> part load operation

- >> flexible, attractive service structure/ contract (who is doing what depends on specific project landscape)
- >> intensive support in commissioning phases
- >> regular ASS, responsiveness,
- >> regular support emission control/ gas cleaning

Where do you find information? >> GE Jenbacher intranet - Webportal

https://information.jenbacher.com

LFG special features and support I

LFG special features and support II

