Practical Considerations of LFG Analysis, Measurement, and Data Management to Receive CDM Credits

Tony Trocian
Topics

• Evaluation of site
• Gas management
• Monitoring to collect CDM credits
• CDM Case Study
Evaluation of site

- Gas composition and flow measurements
- Gas migration measurements
- Information to be added to models

Estimation of the potential emission reduction
Gas Management

- Aim is to extract as much gas with fewest problems
- Improve System Reliability
- Reduce Well-field aging factor
- Improve Collection Efficiency
- Reduce Operation and Maintenance Costs
- Applicable to both CDM and non CDM projects
Gas Management

• Improvements due to:
 • Routine maintenance
 • Well-field tuning
 • Data Analysis and Management – trend analysis
 • Recommended surface improvements that: Reduce leakage – low flow of LFG and Reduce air infiltration – poor quality of LFG
Gas Management

- Improvements due to:
 - Proactive adjustment of system parameters results in fewer failures of equipment
 - Early detection of potential problems
 - High Condensate level
 - Low Flow
 - Sudden increase in O2
Gas Management

- Analysers designed for Landfill gas measurement
- Easy to use
- Operators trained on usage and replacement of filters
- Manufacturers instructions on maintenance and calibration followed.
• This methodology is applicable to landfill gas capture project activities
• Gives the approved consolidated baseline and monitoring methodology
• Main measurements are flow, methane content, temperature and pressure
• Continuous monitoring with reporting an average in time intervals not greater than an hour
Figure 1: Monitoring Plan

Measurements:
CH₄ = Fraction of CH₄
T = Temperature
P = Pressure
F = Flow of LFG (m³)

PE_{flare} = Project emissions from flaring of the residual gas stream
• Additional flow measurements if gas is split to Flare, Power Plant, Boiler or Pipe
• If using flare need to measure emissions from the flare
CDM Credits

• Strong QA/QC procedure for the calibration of equipment is needed.
• Prove measurements taken are accurate and tamper proof.
• ISO17025
CDM Credits

• Training of on site staff
• Routine maintenance
• Additional measurements
• Routine review of data
Case Study

- General Project Information
- Registration Process
- Methodology Selected & Implemented
 - Recent changes
- Monitoring Equipment Implemented
 - Equipment for current methodology
- Quality Assurance and Quality Control
- Reporting and Analysis of Data
- Current Project Status and Results
• Joint Venture between S.A. Paulista & EcoSecurities
 - Brazilian Civil Engineering & Construction firm
 - Environmental finance company – GHG

• CDM Project 0008
 - Brazil and Netherlands
 - First registered CDM landfill project
 - Large scale project – >15 Megawatt output/reduction
 >15 Kilotonne reduction in anthropogenic emissions
 - Consist of two sites; Adrianopolis & Marambaia
 - Flaring Landfill Gas and generating electricity
 - First phase is complete and operating successfully
Adrianopolis Landfill

- NW Rio de Janeiro, Brazil
 - Close to suburb of ~800,000
 - Transmission lines

- Active Site
 - Feb 2003
 - 1,000 T/day
 - Active collection
 - ~80 wells
 - ~46% CH₄
 - 1,300m³/h
 - Max 9,000m³/h
Marambaia

- Adjacent to Adrianopolis

- Closed Site
 - 1986 - Feb 2003
 - \(~700,000\) to \(2,000,000\) Tons
 - Active collection
 - \(~35\) wells
 - \(~25\%\) \(\text{CH}_4\)
 - \(300\text{m}^3/\text{h}\)
Registration Process

• Develop
 – Project Design Document (PDD)
 • Project activities
 • Baseline Study
 • Duration & credit period of project
 • Monitoring Plan (MP) & Calculations

• Review / Certification
 – Designated Operating Entity (DOE)
 • Validate request for registration
 • Verify emission reductions
 – CDM Executive Board

• Respond / Revise
 – Corrective Action Request (CAR)
 – New Information Request (NIR)
Project Milestones

• 2001 S.A. Paulista granted 20 year concession
 – Decommissioning and rehabilitation of Marambaia

• Project Design Document & Monitoring plans
 – Prepared September 2002
 – Stakeholder interviews February 2003
 – Validated August 2004
 – Registration November 18, 2004
 – Credit period July 1st 2004

• March 15th 2007 Adrianopolis operational
• May 17th 2007 Marambaia operational
• February 17th to 19th 2008 site verification
• June 20th 2008 emission reductions verified
Methodology

- AM0003 ver. 1 – Simplified financial analysis for landfill gas capture projects
 - Methane fraction in landfill gas
 - Flow of landfill gas to flare
 - Flare temperature
 - Flare efficiency
 - Flare run time
 - Gross electricity produced (future)
 - Generator heat rate (future)
 - 20% reduction at Marambaia
 - Adjustments for emissions due to project
Current Methodology

• Current AM0003 version 4
 – Retains monitoring from NovaGerar project
 – Adds monitoring of flare in accordance with Annex 13
 “Tool to determine project emissions from flaring gases containing methane”
 – Continual monitoring of methane emissions from flare stack
 – Exhaust flow
 – Methane in and out for actual continuous efficiency
Monitoring Equipment

- Automated Extraction Monitoring System (AEMS)
- CH₄ – Field Analytical Unit (FAU)
- Flow – Thermal Mass
- Temperature “K” Thermocouple
- Flare Efficiency – Semi annual stack test
- Flare Run time – Logic and Fire eye
- Propane used for ignition – Logic and number of ignitions
- Electric meter and invoice from electric provider
Monitoring Equipment Version 4

• Flare Exhaust Monitor
 – Measures CH\textsubscript{4} in flare exhaust 0 – 500 ppm
 – Measures O\textsubscript{2} in flare exhaust 0 - 25%

• Integral portion of the Automated Extraction Monitoring System (AEMS)
 – Enables calculations of flare flow and efficiency

Without measurement default value is 90%
Quality Control/Quality Assurance

- **Daily QA/QC**
 - Review of Envirocomp LFG Pro data; Calibration records, LFG composition, flare temperature, flow and run time.

- **Weekly QA/QC**
 - Review operation processes and procedures
 - Review gross emission reductions, discount for LP used to ignite flare

- **Monthly QA/QC**
 - Custom LFG Pro reports
 - Discount emission reductions for electricity used – generate net emission reductions
27 Documents
- Project documents PDD, MP
- Calibration certifications
- Calculations
- Operational & Maintenance

Envrirocomp LFG Pro
- Data at two minute interval
- FAU Calibration data
- Flare ignitions
- Gross emission reductions
Results of Monitoring & Reporting

• Totals Reported
 – 11,344,724.65 m³ LFG Flared
 ~ 10,000,000 from Adrianopolis
 – 29,099.80 kWh Electricity used
 ~ 20,000 from Adrianopolis
 – 3.932 m³ LPG used ~ equal split between sites

• Emission Reductions Claimed
 – 67,303 tCO2e

• Percentage Certified/Verified
 – 100%
CDM case study and other case studies can be downloaded from

www.geotech.co.uk

Thank you for your attention