Steps Towards Initiating LFG Utilization Projects in Developing Countries – Planning Process, LFG Models, and Managing Project Expectations

Alex Stege – SCS Engineers (Contractor for U.S. EPA LMOP)

M2M Expo - Delhi
March 2010
Presentation Topics

- Challenges to implementing CDM landfill gas (LFG) projects:
 1. Site conditions in developing countries limit project potential
 2. Navigating the LFG project planning process:
 3. O&M issues: landfill, leachate, and LFG collection system
 4. LFG collection and control/utilization system design and installation
 5. LFG models and over-estimating LFG project potential

- CDM monitoring reports – project performance data
 - Causes of observed CER shortfalls from the list of challenges

- Avoiding over-estimating project potential – focus on improved LFG modeling
1. Site Conditions in Developing Countries

- Site conditions that limit LFG recovery rates:
 - Shallow waste depth, poor compaction
 - High food waste %, often rainy climates
 - Lack of soil cover and/or poor drainage lead to high leachate levels
 - Fires, waste pickers, site security

El Trebol Landfill, Guatemala City
2. Project Planning Process

- Site identification and initial screening
- Project assessment
- Pre-feasibility study
- RFP and select developer
- PDD
- Project validation and registration
2A. Project Planning Process – Site ID & Initial Screening

- Site identification and initial screening
 - Engineered/sanitary landfill or dump site?
 - Waste in place, age, composition
 - Disposal rates and remaining site capacity
 - Location and political/public acceptance

Okhla, Delhi Dump Site
2B. Project Planning Process – Assessment Report

Assessment report

- Data collection:
 - Waste data: area, height, disposal rates, waste in place, future capacity, composition
 - Site conditions: climate, soil cover, liner systems, waste compaction, leachate levels, surface drainage, slope stability
- Landfill visit to confirm/collect data and observe site conditions, particularly drainage and leachate accumulation
- Model estimates of LFG generation and expected recovery
- Assess potential utilization options – electricity generation, direct use, flaring for carbon credits
2C. Project Planning Process – Pre-Feasibility Study

- Project pre-feasibility study
 - Site visit for detailed data collection and field observations
 - Field testing recommended
 - Drilling test wells useful for measuring LFG flows, methane %, leachate levels
 - Pump tests can lower uncertainty, but they are of limited value for LFG model “calibration” unless long-term and large scale (very costly)
 - Model estimates of LFG generation and recovery
 - Professional with international modeling experience
 - Preliminary LFG system design for cost estimates
 - Capital and operating cost estimates for collection system, blower/flare station, electricity generation facility, LFG treatment and pipeline for direct use
 - Economic evaluation of project options
 - Environmental benefits and CERs
 - Conclusions and recommendations – viable project?
Project Planning Process Issue: Gas Rights and Owner’s Expectations

- Ownership of gas rights may be unclear
 - Multiple parties with claims
- Unreasonable expectations of owners
 - Owner may believe there is more gas than actually there
 - Expectations of high royalties for rights can deter developers
 - Project revenues may not fully cover site remediation costs
- Possible result: project delayed (less CERs) or never occurs
2D. Project Planning Process – RFP for Project Developers & Investors

- Bid process for winning a project development contract often rewards optimistic estimates of CERs
 - Developers play off of owners’ high expectations
 - Combines with poor understanding & high uncertainty of LFG modeling to overestimate project potential

- Solution is for LF owner to: a) have realistic expectations; and b) not rely on developer’s projected revenues for evaluating bids
 - Have LFG pre-feasibility/modeling expert do CER estimates
 - Require bids based on $/CER rate
 - Require meeting performance standards including system completion schedules
2E. Project Planning Process – Developing a PDD

- LFG projects – use UNFCCC Methodology ACM0001 Version 11 and approved “tools”
 1. General description of project activity
 2. Description of emission sources w/in “project boundary”
 3. Identify baseline – currently flaring or required to flare?
 4. Establish “additionality” – would project create GHG emission reductions above BAU?
 5. Identify emission reductions = Baseline – project emissions
 6. Calculate emission reductions (“ex ante”)
 7. Description of monitoring plan
 8. Analysis of environmental impacts
 9. Stakeholders comments (minutes of meeting)
2F. Project Planning Process – CDM Validation & Registration

- **Validation** – PDD reviewed by Designated Operational Entity
 - Checks if PDD meets all CDM requirements
 - If PDD approved by Executive Board, DOE finalizes validation

- **Registration** – formal acceptance of CDM project
 - Review by EB if requested
 - CDM project approved or rejected by EB
3A. Operations & Management: Landfill & Leachate

- Lack of soil cover, liners, waste compaction, or controlled tipping areas
- Unstable side-slopes; potential for fires; uncontrolled public access
- No leachate management system (runoff control, drainage, treatment)
- Remediation required before collection system installation:
 1. Re-grade
 2. Close & install final cover
 3. Leachate and runoff control
 4. Site security
3B. O&M: LFG System

- Ongoing system maintenance and monitoring program required to:
 - Maximize effective collection system function
 - Limit gaps in monitoring methane destruction
 - Manage limitations imposed by site conditions and system design
4. LFG System Design and Installation

- **Design issues:**
 - Commitment of resources to system components and wellfield coverage appropriate for site conditions
 - Accounting for site geometry and management history
 - Closed vs. active site/cells – vertical vs. horizontal wells
 - Liquids (condensate and leachate) drainage issues, pumping and treatment requirements
 - Design to accommodate maintenance & monitoring
 - Timing/phasing of system expansions (active sites)

- **Completeness of system installation**
 - Delays in developing active disposal cells cause the loss of CERs from waste that produces the most methane
 - Leachate issues (high cost of treatment) can limit extent of site development
5. LFG Models – Uncertainty and Overestimation

- LFG recovery projections (using LFG models) are basis of entire planning process
 - Main determinant of project feasibility & requirements
 - LFG modeling methods (U.S. EPA LandGEM 1st order model) well known but input assumptions uncertain:
 - Waste disposal rates and composition
 - Waste decay rate constant \((k) = \ln(2) / \text{half-life (year}^{-1}) \)
 - Ultimate methane yield \((L_0) = m^3 \ \text{CH}_4 / \text{Mg waste} \)
 - Collection efficiency \(= m^3 \text{ collected} / m^3 \text{ generated (}) \%
 - International modeling poorly understood due to lack of data, uncertain methods of accounting for site conditions

- Historic overestimation of LFG recovery and CERs
 - Monitoring reports (actual project results when applying for CERs) indicate project performance
 - Compare to PDD model prediction – average ~50%
CDM Project Performance as a % of Projected Recovery*

- 2003 - 1 project: 60%
- 2004 - 4 projects: 54%
- 2005 - 10 projects: 44%
- 2006 - 21 projects: 30%
- 2007 - 37 projects: 47%
- 2008 - 41 projects: 55%
- 2009 - 30 projects: 59%
- **Overall average: 49%**

*Based on total actual CH₄ recovery from monitoring report data (available on the UNFCCC website for 60 CDM LFG projects as of 12/12/09) divided by total projected CH₄ recovery from PDDs. CER deductions for baseline, methane destruction efficiency, etc. were added to estimate CH₄ flows.
CDM Project Performance as a % of Projected Recovery

Number of Sites Reporting

- >100%
- 75%-100%
- 50%-74%
- 25%-49%
- <25%

2003 2004 2005 2006 2007 2008 2009
Actual Project Performance % of Projected Recovery - Brazil Projects (15)
Actual Project Performance % of Projected Recovery – Argentina, Chile & Other South America Projects (18)
Actual Project Performance % of Projected Recovery – Mexico and Central America Projects (7)
Actual Project Performance % of Projected Recovery – Asia Projects (15)

CHINA (11), KOREA (2), MALAYSIA (1), AND THAILAND (1) PROJECTS
Actual Project Performance % of Projected Recovery – Middle East and Africa Projects (5)

EGYPT (1), ISRAEL (2) AND SOUTH AFRICA (2) PROJECTS

2005 2006 2007 2008 2009

Number of Sites Reporting

>100%
75%-100%
50%-74%
25%-49%
<25%
Causes of Under-Delivery

- Bad LFG modeling practices
 - Failure of model assumptions to account for site conditions, reasonable system installation schedule
 - Project developer’s lack of modeling expertise combined with incentives to overestimate CERs

- Site conditions and other challenges can hinder project implementation
 - LFG system design and O&M efforts may not be adequate to overcome difficult site conditions (e.g. leachate)
 - Delays in resolving political/financial issues and completing the planning and CDM process
 - Delayed or partial system installation causes large loss of LFG recovery and CERs

- How much of the CER shortfall was predictable/preventable?
LandGEM Shortcomings for International Applications

- U.S. EPA Landfill Gas Emissions Model (LandGEM) is based on U.S. waste composition
 - Other countries often have much higher % food waste
- Simple EPA model structure doesn’t work well with high food waste %
- Model provides only “wet” and “dry” U.S. k values
- Model provides estimates of LFG generation only, not recovery
Waste Composition & Climate in Developing Countries

- High food waste content:
 - Model L_0 needs to be adjusted to account for moisture content (inert %)
 - Fast decay rates (k) cause a steep decline in LFG generation after closure
 - Rapid waste decay = short time for capturing emissions

- Leachate buildup likely unless very dry climate
IPCC Model (2006)

- International first-order decay model – improvements over LandGEM:
 - Assigns k values based on 4 climate categories
 - Uses different k values for each of 4 organic waste categories (avoids LandGEM single k problem)
 - Includes a methane correction factor (MCF) to account for aerobic decay in unmanaged sites
 - Recognized by UNFCCC for CDM and JI projects

- IPCC Model shortcomings
 - Developed as a global model
 - Limited ability to reflect conditions in individual countries
 - Uses continental scale default waste composition values
 - Only two precipitation categories (k varies continuously with precipitation)
 - No guidance on estimating collection efficiency
Collection Efficiency

- Estimated based on an evaluation of:
 - Site conditions impacts (soil cover, leachate, geometry, etc)
 - Collection system coverage and build-out schedule
- Estimated upper limits based on site management:
 - Engineered and sanitary landfills: ~60-95%
 - Open and managed dump sites: ~30-60%
Under-Performing Projects or Overly Optimistic Models?

- In many cases, overestimates can be traced to common (avoidable) model problems:
 - Model Lo value too high – e.g. U.S. (NSPS) default
 - Use of simple first order decay model with single k value
 - High collection efficiency assumptions
 - Site conditions’ impacts not anticipated

- How much of the CER shortfall was predictable or preventable?
LMOP’s Country-Specific LFG Models

- LMOP first recognized need for country-specific models in 2003 (Mexico model v. 1)
- 2007 – LMOP’s Central America Biogas Model
- 2009 – LMOP released several country-specific LMOP models:
 - Ecuador LFG Model
 - China LFG Model
 - Thailand and Philippines LFG Models completed
 - Mexico LFG Model Version 2
 - Ukraine LFG Model
- SCS developed Central America, Mexico, and Ukraine LFG models
Mexico’s Climate Regions

- **NORTHWEST & INTERIOR NORTH (NW & IN)** – warm and very dry
- **NORTHEAST (NE)** – very warm and moderately dry
- **SOUTHEAST (SE)** – hot and very wet
- **WEST (W)** – warm and moderately wet

CENTRAL (C) and FEDERAL DISTRICT (D.F.) – temperate and moderately dry
LMOP’s Mexico LFG Model

- Model reflects Mexico’s waste composition, climate, site conditions, and actual system performance at 4 project sites
 - Each state has default k and Lo values reflecting climate and average waste composition
 - Multi-phase model with 4 k values for different waste categories (similar to IPCC model)
 - Site visits and LFG flow data from 4 landfills used to validate model
 - User answers questions in input sheet – model automatically calculates waste disposal rates and collection efficiency
 - Calculated default inputs can be overridden with site-specific data
Ukraine’s Climate Regions

Precipitation (mm/yr)
Region 1: 360-429
Region 2: 430-499
Region 3: 500-599
Region 4: 600-699
LMOP’s Ukraine LFG Model

- Model reflects composition of wastes disposed in Ukraine’s landfills
- Model reflects local climate – varies inputs (k) based on average precipitation
- Structure model to capture Ukraine conditions
 - Use 4 k model structure
 - Include adjustments to LFG generation and recovery to account for site conditions
- Allow model to run with simple user inputs
 - Waste disposal rates and collection efficiency calculated from user’s answers to questions
Summary

- Reviewed challenges to CDM LFG project implementation that have contributed to CER delivery shortfalls
 - Monitoring data not meeting PDD expectations
 - Shortfalls often result from inappropriate LFG model assumptions
 - Impacts of site conditions and other challenges to project success were not anticipated
 - Latest monitoring data show improvements (Better modeling? More project experience? Bad projects fall off list?)
Conclusions

- Improved LFG modeling = project CER expectations that are achievable
 - RFP/bidding and selection process for project developers and investors can benefit from realistic assessment of project potential

- LMOP’s country-specific LFG models:
 - Provide better accounting of waste composition and site conditions
 - Provide default collection efficiency assumptions that reflect likely challenges to collection system design and O&M
For More Information:

- For more information about this presentation, contact Alex Stege at: astege@scsengineers.com
- LMOP’s international LFG models are available at: www.epa.gov/lmop/international/index.htm
- IPCC Model is available at: www.ipcc-nggip.iges.or.jp/public/2006gl/vol5.htm