

Main sponsors:

INTRODUCTION

- The causes and consequences of climate change are generally accepted and recognized
- Solid waste management practices generate GHG emissions
- ISWA White Paper (December 2009)

KEY DRIVERS

- ISWA has identified the following drivers to move the waste industry forward as a leader in reducing GHG emissions:
 - Technology
 - Material Recovery
 - Organic Recovery
 - Energy Recovery
 - CDM
 - Policy and Regulation
 - GHG Accounting Methodologies

TECHNOLOGY

- No one size fits all!
- Must be tailored to particular country/region
- Key components:
 - 1) Integrated
 - 2) Lower energy consumption
 - 3) Utilizes energy recovery

TECHNOLOGY (continued)

ISWA Recommendations:

- 1) Encourage global responsibility
- 2) Assess present GHG emission levels
- 3) Foster the sharing of experiences, technologies, skills and knowledge
- 4) Utilize proven technologies and additional research

MATERIAL RECOVERY

- CRITICAL!
- Substantial GHG emission reductions
- Variety of materials to target
- U.S. national recycling rate was 33.4% (2007)

ORGANIC RECOVERY

- Substantial portion of waste steam globally (30-70%)
- Soil conditioning or fertilizer
- Impact reduced need for pesticides

ORGANIC RECOVERY (continued)

ISWA Recommendations:

- 1) Understand impact of compost on soil
- 2) Continue research and sharing of best practices

ENERGY RECOVERY

- Significant energy value in waste
- Proven technologies exist
 - Waste-to-energy -- more than 130 million tonnes of waste are burned every year at over 600 waste-to-energy plants

ENERGY RECOVERY (continued)

- Dual GHG reduction benefit
- Encourage favorable waste utilization policies
- Policies/incentives may include:
 - 1) Pricing
 - 2) Tax credits

CDM/JI

- Key programs under the Kyoto Protocol
 - CDM 18% of the 1,834 CDM projects were waste related (10/09)
 - JI 19 of 73 projects are solid waste
- Lots of potential for additional projects

CDM/JI (continued)

- Challenges:
 - 1) Technology diversification
 - 2) Geographical distribution
 - 3) Approval process

CDM/JI (continued)

- Effective mechanisms for transferring SW technologies to developing countries
 - Significant environmental, social and economic benefits

CDM/JI (continued) ISWA Recommendations:

1) Develop new CDM methodologies for unrepresented SW projects

2) Streamline project approval process

3) Simplify CDM demonstration additionality requirements

POLICY & REGULATION

- Waste policies and regulations can be strong drivers for reducing GHG emissions
- Paradigm shift in WM policies
 - Public health to waste utilization
- Policies should contain precise intermediate and long-term goals
- Regulations and policies from one country or region cannot be transferred across borders

POLICY & REGULATION Example #1 – <u>European Union</u>

- Prior to 1990 policies focused on reducing waste going to landfills and encouraging the recycling of materials, but with no binding targets
- From 1990 to 2007 the EU reduced GHG emissions through progressive policies that targeted reducing packaging and diversion of organics from landfills included binding targets
- GHG emissions have been reduced from 69 million tonnes of CO₂e in 1990 to 32 million tonnes of CO₂e in 2007

POLICY & REGULATION Example #2 – <u>North America</u>

- Past few years have seen a dramatic shift in the political climate concerning the need to limit GHG emissions
- No national GHG reduction program has been established (although lots of pending legislation); however, many states are taking the lead in reducing GHG emissions through regional initiatives
- U.S. EPA issued final regulation that requires mandatory reporting of GHG emissions from sources (including landfills and waste-to-energy facilities) that emit over 25,000 tonnes of CO₂e annually

POLICY & REGULATION Example #3 – <u>Malaysia</u>

- Policy and regulation instruments include:
 - Producer Responsibility
 - Action plans and targets for recycling materials and closure of old landfills
 - Requirements for waste minimization, use of recycled content materials, limitation on the use or disposal of environmentally degrading products and product labeling
 - Current policies in Malaysia call for 17% waste reduction and recovery and the closure of all existing dumpsite by 2020

POLICY & REGULATION

ISWA Recommendations:

- Policies and regulations coupled with fixed goals are important drivers for reducing GHG emissions and obtaining other environmental benefits
- Review and analyze experience in Europe and U.S. to understand potential mechanisms to implement SW policies

GHG ACCOUNTING

- Accurate measurement and quantification is necessary to set realistic reduction targets
- Reporting and quantification tools exist
- IPCC GHG inventory methodologies only estimate direct emissions
 - Significant portion of waste sector's GHG benefits are from avoided emissions

GHG ACCOUNTING ISWA Recommendations:

- Waste sector should continue its efforts to standardize the accounting methodologies
- Encourage the IPCC to adopt an additional methodologies to capture in avoided emissions and environmental benefits

SUMMARY

- The waste industry has made substantial contributions and efforts to reduce GHG emissions, but there still exists significant potential for further emission reductions
- ISWA white paper titled Waste and Climate Change is available from the ISWA website
 <u>www.iswa.org</u>

CONTACT

Dr. Atilio A. Savino

President, ISWA

asavino@ars.org.ar

Ms. Rachel Goldstein U.S. EPA LMOP +1 (202) 343-9391

Goldstein.rachel@epa.gov