A Comparison of Coalbed Methane Drilling Practices in the Southern Shanxi Province, China, through Advanced Reservoir Modeling

Danny Watson
Marshall Miller and Associates
and
Steve Keim
Virginia Center for Coal and Energy Research
Virginia Tech
This presentation has not been reviewed by the EPA. Any views expressed are solely those of the authors. The EPA does not endorse any products or commercial programs mentioned in this presentation.

This material is based upon work supported by the Environmental protection Agency under project XA-833963-01.
Overview

- EPA Methane to Markets Project
- Current status of CBM production in China
- CBM potential in China
- Basic CBM modeling parameters and assumptions
- Inputs for modeled CBM reservoir
- Results
EPA Methane to Markets Project
Best Practices for Mine Degasification

- **Marshall Miller and Associates** - Detailed Feasibility Study Template and Reserve Analysis for CBM Field in Southern Shanxi Province, China
- **Virginia Tech** - Modeling Simulations, Comparisons of Various Degasification Practices
Coal Basins and Resources in China

China’s Coal Reserves

<table>
<thead>
<tr>
<th>Type</th>
<th>Reserve (Bt)</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown Coal</td>
<td>658 Bt</td>
<td>13%</td>
</tr>
<tr>
<td>Bituminous</td>
<td>3,794 Bt</td>
<td>75%</td>
</tr>
<tr>
<td>Anthracite</td>
<td>607 Bt</td>
<td>12%</td>
</tr>
<tr>
<td>Total Reserve</td>
<td>5,059 Bt</td>
<td></td>
</tr>
</tbody>
</table>

Source: Overview of China’s Coal Resources – 1996 (Bt: Billion Tonnes)
China Coal Statistics

- Energy consumption satisfied by coal
- ~30,000 existing coal mines (fully mechanized to hand-loading). Some estimates are >50,000 mines
- Reported employment >6 million
- Average miner produces ~325 tonnes/year
- Coal production
 - 2003: 1.7 billion tonnes
 - 2004: 2.0 billion tonnes
 - 2005: 2.2 billion tonnes
 - 2006: 2.3 billion tonnes
 - 2009: 2.6 billion tonnes
China Coal Statistics

- Official reported fatalities in:
 - 2003 = 6,700
 - 2004 = 6,000
 - 2005 = 5,500
 - 2006 = 4,700
 - 2007 = 3,800

- Reportedly China can safely produce 1.2 billion tonnes/year.

- Remaining 0.8 billion tonnes generated from small, unregulated mines and overproduction at large, undercapitalized mines.
China Coal Statistics

• Majority of Chinese mining accidents related to methane explosions
 – Reported ~30% to 40% of deaths from CH₄ explosions

• Low permeability and high rank coals

• ~ 1/3 of Chinese mines develop coal with gas contents exceeding 300 ft³/tonne

• Chinese need western degas technology
 – In-mine drainage
 – Surface drilling (both vertical and slant)
China’s Coalbed Methane Production

Billion cubic meters

Actual
Projected
U.S. Coalbed Methane Production
1989 - 2007

Billion cubic meters

Source: E.I.A., Office of Oil and Gas • Annual Report
Natural Gas Production: US vs. China

Current Annual Production:

- US: 550 Billion m³
- China: 50 Billion m³

CBM: ~50 Billion M³
Comparison of 4 CBM Basins:
Central Appalachian Basin, Black Warrior Basin, and San Juan Basin (U.S.A.), and Qinshui (China)
Cleat Development Comparison

Typical Anthracite (U.S.)

Note: Absence of Cleats

Jincheng No. 3 Seam

Note: Favorable Cleat Development
MLD Well Drilling
Modeled Wellbore Orientations
Modeling Governing Equations

- Langmuir Isotherm Relationship
 \[V(p) = \frac{V_L P}{P_L + P} \]

- Fick’s Law of Diffusion
 \[q_m = \frac{V_m}{\tau} [V - V(p)] \]

- Darcy’s Law
 \[q_s = -\frac{k}{\mu} \text{grad}(P) \]
Modeling Inputs

<table>
<thead>
<tr>
<th>Input Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Water Saturation</td>
<td>100%</td>
</tr>
<tr>
<td>Initial Reservoir Pressure</td>
<td>550 psi</td>
</tr>
<tr>
<td>Initial Gas Content</td>
<td>500 cubic feet per ton</td>
</tr>
<tr>
<td>Cleat Porosity</td>
<td>3%</td>
</tr>
<tr>
<td>Cleat Spacing</td>
<td>2 inches</td>
</tr>
<tr>
<td>X Direction Permeability</td>
<td>3 md</td>
</tr>
<tr>
<td>Y Direction Permeability</td>
<td>1 md</td>
</tr>
<tr>
<td>Z Direction Permeability</td>
<td>3 md</td>
</tr>
<tr>
<td>Langmuir Pressure</td>
<td>290 psi</td>
</tr>
<tr>
<td>Langmuir Volume</td>
<td>1000 cubic feet per ton</td>
</tr>
</tbody>
</table>
Modeling Calibration

• Assumes all wells (vertical and multilateral) can produce 250 barrels of water per day

• Once operating pressures reach atmospheric pressure, water production is reduced to maintain atmospheric operating pressure

• Skin Factors
 – Vertical Fracture Wells: -3.0
 – Multilateral Horizontal: +0.5
Daily Total Production Comparison - MLD Without Vertical Support

Graph showing the comparison of daily total production over time (years) with a logarithmic scale for gas production (mcf/d). The graph indicates a decreasing trend in production over time, with a sharp initial peak followed by a gradual decline.
Daily Total Production Comparison – System of MLD and Vertical Support
Analysis of Vertical Support Wells

- Multilateral Wells Produce Large Volumes of Gas Without the Use of Vertical Support Wells
 - MLD Peak Rate—2.4 MMcfd
 - Vertical Peak Rate—50 Mcfd
- Vertical Support Wells Provide Negligible Additional CBM Production
 - Gas Drained by Vertical Support Wells is Easily Drained by MLD
- Economically, the Capital Expenditures from Vertical Support Wells Could be Better Used to Drill More Densely Spaced Multilateral Wells and/or Additional MLD Wells
Comparison of Recovery (2.0 md)

2.0 md, 600-ft spacing, 3 years

2.0 md, 200-ft spacing, 3 years
Comparison of Recovery (0.2 md)

0.2 md, 600-ft spacing, 3 years

0.2 md, 200-ft spacing, 3 years
Conclusions

• Vertical Support Wells Do Not Provide Sufficient Additional Production Compared to Closely Spaced Laterals
• Closely Spaced Laterals are Crucial for Optimal Recovery When Degasification Time is Short and/or Reservoir Permeability is Low
• Required Capital to Drill Additional Laterals is Low Relative to Other Capital
• In Gassy Reservoirs, Effective Pre-Mining Degasification Lowers Carbon Footprint and Improves Mine Safety
Acknowledgements

• United States Environmental Protection Agency (EPA)
• Advanced Resources International (ARI)
 – George Koperna, Karine Schepers