# Methane to Markets

Directed Inspection & Maintenance with Remote Sensing

U.S. Environmental Protection Agency

October 31, 2007



### Agenda

- Methane Losses
- Methane Recovery
- Directed Inspection and Maintenance (DI&M)
- Infrared Leak Detection
- Partner Experience
- Discussion



#### **Potential Methane Losses**

- Fugitive emissions from natural gas systems worldwide are estimated to be 40 billion cubic meter per year
  - Estimate half a billion cubic meters fugitive emissions in China
- In excess of \$100<sup>1</sup> million worth of methane emissions per year for China



Source: Newfield



### What is the Problem?

- Gas leaks are invisible, odorless, and go unnoticed
- Natural Gas STAR Partners find that valves, connectors, compressor seals, and open-ended lines (OELs) are major methane emission sources
  - Fugitive methane emissions depend on
    operating practices, equipment age, and
    maintenance



# What are the Sources of Emissions?





### **Component Contribution**

- American Petroleum Institute (API) study showed that 92% of reducible emissions come from only ~ 0.13% of components
- Leaks occur randomly
- Few significant repeat leakers found



# Methane Recovery

- Fugitive losses can be dramatically reduced by implementing a directed inspection and maintenance program
  - This is a program to identify and fix leaks that are cost-effective to repair
  - Survey cost will pay out in the first year
  - Provides valuable data on leak sources with information of where to look



Source: Targa Resources



# What is Directed Inspection and Maintenance?

- Directed Inspection and Maintenance (DI&M)
  - Cost-effective practice, by definition
  - Find and fix significant leaks
  - Choice of leak detection technologies
  - Strictly tailored to company's needs



Source: Targa Resources



### **Screening and Measurement**

| Summary of Screening and Measurement Techniques |               |                             |
|-------------------------------------------------|---------------|-----------------------------|
| Instrument/<br>Technique                        | Effectiveness | Approximate<br>Capital Cost |
| Soap Solution                                   | **            | \$                          |
| Electronic Gas Detector                         | *             | \$\$                        |
| Acoustic Detector/ Ultrasound Detector          | **            | \$\$\$                      |
| Toxic or Organic Vapor Analyzer                 | *             | \$\$\$                      |
| Bagging                                         | *             | \$\$\$                      |
| High Volume Sampler                             | ***           | \$\$\$                      |
| Rotameter                                       | **            | \$\$                        |
| Infrared Leak Detection                         | ***           | \$\$\$                      |
| Source: EPA's Lessons Learned                   | •             |                             |

\* - Least effective at screening/measurement

\$ - Smallest cost

\*\*\* - Most effective at screening/measurement \$\$\$ - Largest cost

# **DI&M by Infrared Leak Detection**

- Real-time detection of methane leaks
  - Quicker identification & repair of leaks
  - Screen hundreds of components an hour
  - Screen inaccessible areas simply by viewing them
  - Aerial surveillance of flow lines









### **Infrared Methane Leak Detection**

 Video recording of fugitive leaks detected by various infrared devices



 More video available from FLIR Systems: www.flirthermography.com/smartLDAR

# **DI&M - Lessons Learned**

- A successful, cost-effective DI&M program requires measurement of the leaks
- Infrared remote leak detection has made finding leaks quicker and easier than ever
- A high volume sampler is an effective tool for quantifying leaks and identifying cost-effective repairs
- Open-ended lines,
  compressor seals, blowdowns, engine-starters, and pressure relief valves represent <3% of components but >60% of methane emissions



Source: Chevron



### Industry Experience – Targa Resources (formerly Dynegy)

- Surveyed components in two processing plants: 23,169 components
- Identified leaking components: 857 (about 3.6%)
- Repaired components: 80% to 90% of the identified leaking components
- Annual methane
  emissions reductions:
  5,600 million cubic
  meter per year



Source: Targa Resources

 Annual savings: \$1,386,000/year (at \$0.25/cubic meter)



# **Discussion**

- Industry experience applying these technologies and practices
- Limitations on application of these technologies and practices
- Actual costs and benefits