

Methane EmissionMeasurement Techniques

Methane To Markets Partnership Expo

October 30 to November 1, 2007 Beijing, China

Why Quantify Emission Rates?

- Justification for repair/control costs.
- Prioritization and optimization of efforts?
- Objective performance monitoring.
- Potential to generate marketable GHG credits.

Key Measurement Parameters:

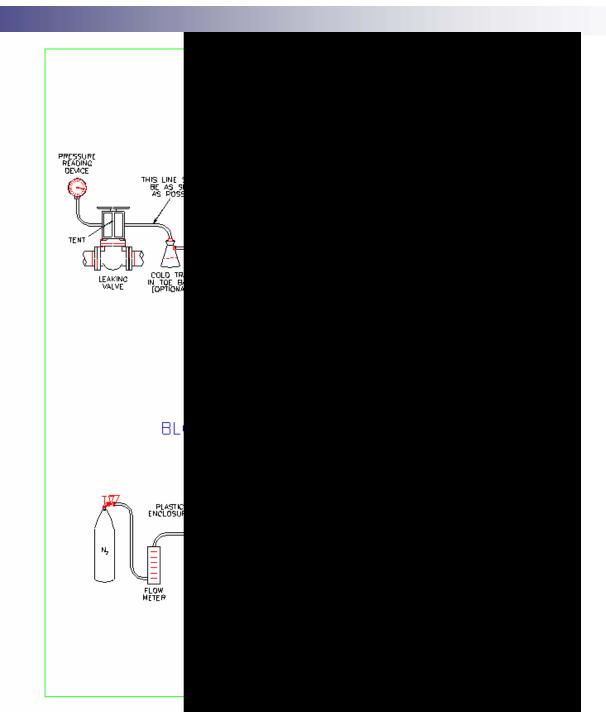
- Temperature
- Pressure
- CH₄ Concentration
- Volumetric Flow

Performance Requirements:

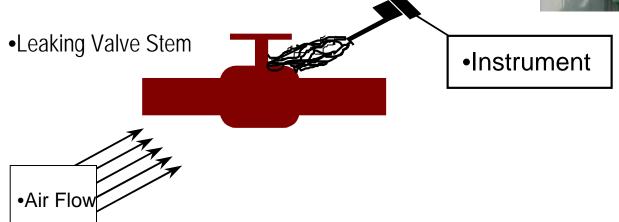
- Practical and safe to use in the field.
- Reasonable cost.
- Readily available.
- Sufficient accuracy for economic evaluations (e.g., ±25% or better).

Basic Options:

- Measurements at the source.
- Remote measurement techniques.
- Engineering Calculations.



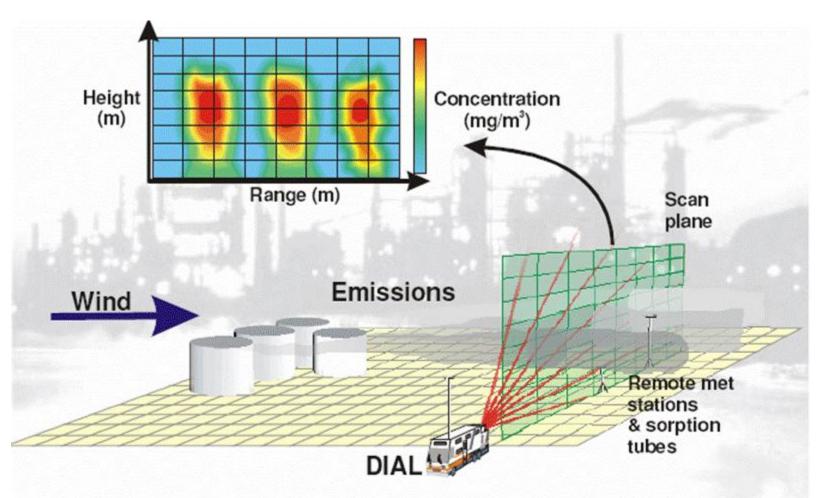
- Typical Applications:
 - □ Equipment leaks, venting and flaring.
- Basic constraints:
 - □ Requires easy or supplied access to source.
- Potential Issues:
 - \square Safety concerns (H₂S or relief events).
 - □ Backpressure limitations.
 - ☐ High or cold temperature surfaces.
 - □ Fouling (e.g., condensing vapor or lube oil mist).


Measurements at the Source:

- Methods:
 - Bagging
 - Time consuming and costly to apply.
 - Applicable for small to moderate leak rates.
 - ☐ Hi-Flow Sampler
 - Convenient approach for smaller to medium sized leaks (e.g., 8 to 10 scfm or \$25,200 to \$31,500/y at \$6/mscf).
 - □ End-of-Pipe Capture & Measurement Techniques
 - Calibrated Bag
 - Full-flow flow meters.
 - Velocity Traverses
 - □ Inline Measurements
 - Velocity Traverses
 - Tracer Techniques

Remote Measurements:

- Typical Applications:
 - □ Area and volume sources.
 - □ Inaccessible or unsafe to access sources.
- Basic Constraints:
 - □ Generally more costly and complicated to use.
- Potential Issues:
 - □ Weather dependent.
 - □ Susceptible to interferences.
 - □ Require suitable downwind access.
 - □ Potentially reduced resolution and accuracy.



Remote Measurements:

- Methods:
 - ☐ Tracer techniques:
 - Pollutant-to-tracer ratio technique.
 - □ Remote plume sensing methods.
 - US EPA (2006): ORS Protocol (www.epa.gov/ttn/emc/prelim/otm10.pdf).
 - DIAL (ftp://public:access@ts.clearstone.ca).
 - Back-calculation using atmospheric dispersion models and upwind/downwind monitoring data.
 - AIRDAR.

Storage Tanks – Remote Emissions Measurement

Engineering Calculations

- Typical Applications:
 - □ Process Venting
- Basic Constraints:
 - □ Requires detailed and accurate process data.
- Potential Issues:
 - □ Requires expert knowledge.
- Methods:
 - Mass balance and energy balance techniques.
 - □ Process simulators.

Compressor Seal Vents:

- Causes of Emissions:
 - □ Seal wear.
- Typical Measurement Problems:
 - □ Potentially multiple leakage points:
 - Centrifugal:
 - Lube oil degassing reservoir.
 - □ Seal Vent.
 - Reciprocating compressors:
 - □ Distance piece and packing case vents.
 - □ Lube oil drain tank vent.
 - □ Crank case vent.
 - □ Potentially large flows.
 - Minimal tolerance to any back-pressure.
 - □ Fouling due to lube oil mist.

- Typical Measurement Problems:
 - Oily roof-tops and limited roof-top access.
 - □ Lack of ports on vent lines.
 - □ Possibly weather caps on vent outlets.
- Measurement Approaches.
 - □ Vane anemometers.
 - Diaphragm meters or calibrated bags where some backpressure can be tolerated.
 - ☐ Hi-Flow Sampler
 - Quantitative remote sensing methods.
 - □ Permanent Solutions:
 - Flow switches.
 - Rotameters.

Blowdown and Vent/Flare Systems:

- Causes of Emissions (During Passive Periods):
 - □ Purge gas.
 - Leakage past the seats of blowdown/relief valves (5 to 10% leak and 1 to 2% of these contribute over 75% of the emissions).
 - ☐ Blowdown or drain valves not fully closed.
 - □ Compressor seals.
- Typical Measurement Problems:
 - □ Potentially large flows.
 - □ Difficulty accessing end of pipe.
 - Limited or no suitable ports for insertion of velocity probes.

Blowdown and Vent/Flare Systems:

- Typical Measurement Problems:
 - □ Low flow velocities.
 - □ Potentially wet or fouling environment inside pipe.
 - □ Safety concerns (relief episodes).
- Measurement Approaches.
 - Micro-tip vane and thermal dispersion anemometers.
 - □ In-line tracer tests.
 - □ Ultrasonic sensors (portable & online).
 - □ Remote sensing methods.
 - □ Permanent Solutions:
 - Ultrasonic transit-time flow meters.
 - Flow switches.

- Causes of Emissions:
 - Working and breathing losses.
 - ☐ Flashing losses.
 - Unaccounted for contributions:
 - Unintentional Gas carry-through.
 - □ Leaking drain and dump valves.
 - Malfunctioning level controllers.
 - □ Inefficient upstream gas/liquid separation.
 - □ Piping changes resulting in storage of unstablized product.
 - Non-routine storage of unstabilized product in atmospheric tanks.
 - Malfunctioning vapor recovery systems:
 - □ Faulty blanket gas regulators or pressure controllers.
 - □ Fouled vapor collection lines.
 - □ Leaking roof fittings and seals.

Typical Measurement Problems:

- ☐ Multiple roof openings.
- □ Edge-of-roof access only.
- Dependence on pump in/out activity and meteorological conditions.
- □ Fall protection and potentially confined space training required.
- □ Interpretation and extrapolation of results.

Measurement Approaches:

- Velocity profiles across openings.
 - Vane anemometers.
- □ Tracer techniques.
- DIAL

☐ API E & P TANKS Model (Flashing, working and breathing losses).

Best options by source:

Source	Hi-Flow	End-of-Pipe Flow Meters	Velocity Probes	Tracer Methods	Quantitative Remote Sensing	Flow/Leak Sensors
Connectors	X					
Valves	Х					
PRVs	Х	Х				
OELs	X	Х	Х			
Blowdown Systems		Х	Х	Х		X
Compressor Seals	Х	Х	Х			X
Flare Systems			Х	Х	Х	Х
Tanks		Х	Х	Х	X	X
Non-point Sources				Х	Х	20

Conclusions on Leak Measurement:

- A selection of measurement technologies is usually required.
- Instrumented solutions are the best choice for large potential emitters:
 - □ Compressor seals.
 - ☐ Flare and vent systems.
 - Metering of gas blanketing systems.