

Methane to Markets Partnership Expo 2007

30th Oct - 1st Nov 2007 in Beijing / China

Case studies from operational and planned landfill gas projects in M2M partner countries

CDM Projekt Landfill Zámbiza, Quito

Ecuador

CDM Landfill Project Zámbiza, Quito (Ecuador)

G.A.S. developed this CDM project in cooperation with its local partner Alquimiatec

- Domestic Landfill in Quito
- Operation: 1979 2002
- Municipal operator from 1993
- approx. 5 Mill. t of waste
- approx. 330.000 t per year
- Extension approx. 20 ha
- Depth of waste > 25 m
- No gas collection
- No aftercare

Project Identification

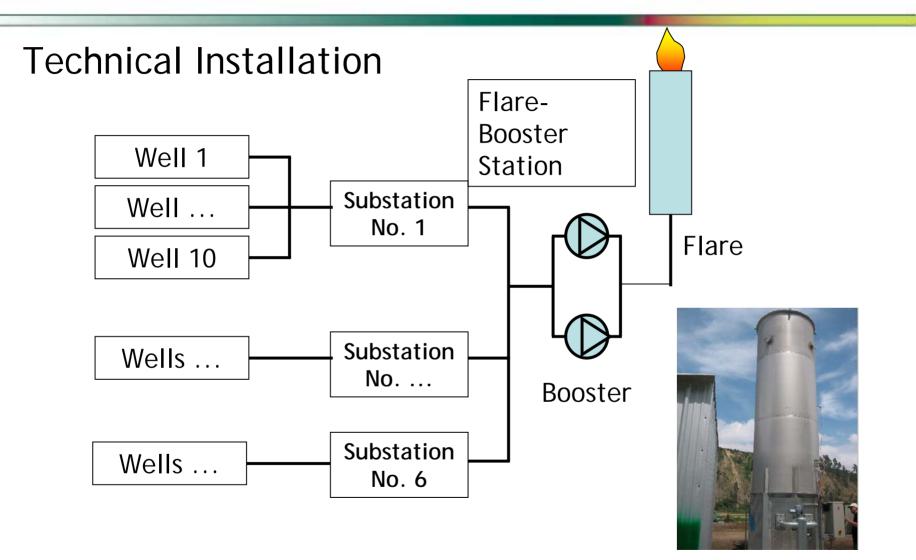
- No gas collection
- No leachate control
- No landfill aftercare

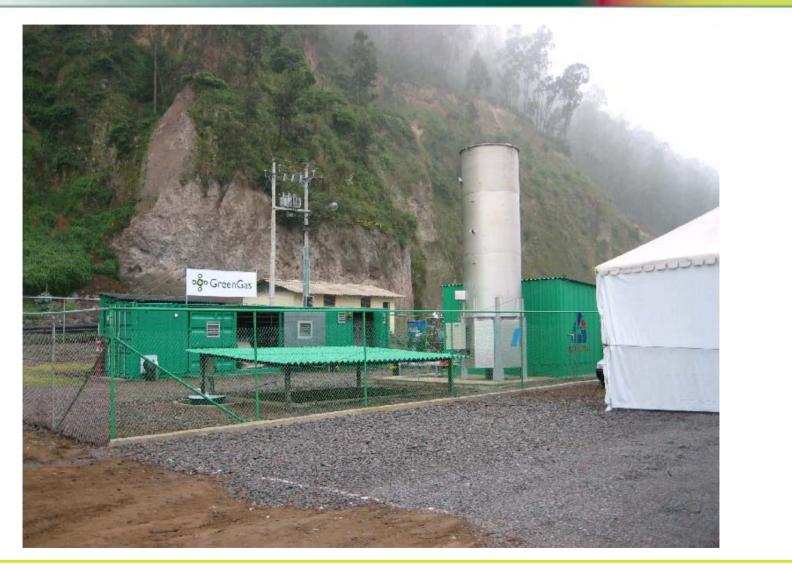
Green Gas Germany GmbH

Gas Pumping Trial

Drilling

Pumping Trial / Installation of the gas collection system




Description of the Project and the Implementation

Place	Quito, Ecuador			
Basic Data	 More than 5 mill. t domestic waste GHG emissions: approx. 13.000 t CH₄/year (corresponding to 273.000 t CO₂e in 2005) 			
Actual State of Project	 Gas capture and flare Potential power generation in a second step 			
Approaches / Data of GHG reduction- potencials	 CH₄-reduction Co-generation heat (renewable) Co-generation energy (renewable) Total GHG reductions 	860.000 0 35.000 895.000 t CO ₂ e		

Green Gas Germany GmbH

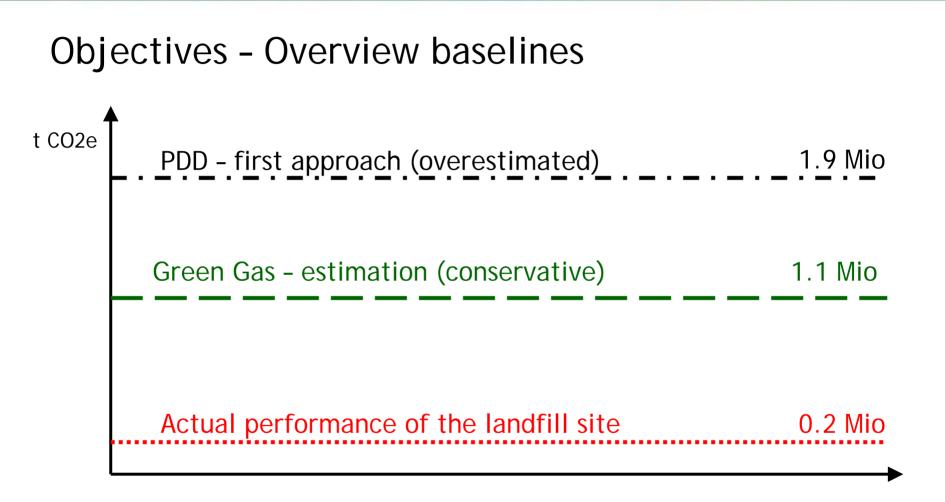
CDM Project Landfill in Santiago

Chile

CDM Landfill Project in Santiago (Chile)

O & M Consultant Agreement between Green Gas and project owner

- Domestic Landfill in Santiago de Chile
- Operation: 1979 2002
- Private operator
- approx. 9,8 Mill. t of waste
- approx. 430.000 t per year
- Extension approx. 24 ha
- Depth of waste > 40 m
- Gas collection system and flare system installed in 2006



Description of the Project December 2006

Place	Santiago, Chile		
Actual State of Project	Gas capture and flarePotential power generation in a second step		
Technical Datas	 Gas installation: Volume flow: Methane concentration: Operation- hours: 	74 wells (active) 2.000 m ³ /h ~35 Vol.% 4 h/day	
Approaches / Data of GHG reduction- potencials	Total GHG reductions 2006 - 2012	- 185.000 t CO ₂ e	

Objectives

- Transform the landfill site in one of the most modern and rentable landfill sites through:
 - Finding solutions for the mentioned problems
 - Optimizing equipment installed and operation
 - Training staff

Green Gas Activities as an O & M Consultant

- Phase 1: Analysis of given situation (Dec 2006 - May 2007)
- Phase 2: Enhancing the output of the landfill gas utilisation system

(Jun 2007 - Sep 2008)

Phase 3: Monitoring services, quality supervising of the workforce on site

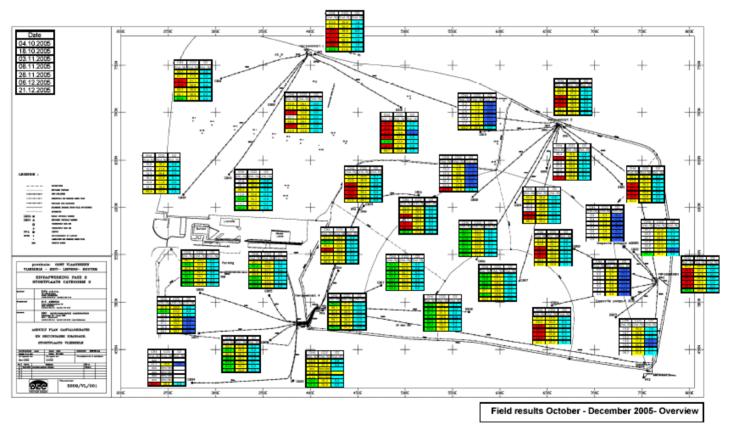
Detected Problems -Design of gas collection system

Detected Problems - Air intake

Detected Problems - Dewatering

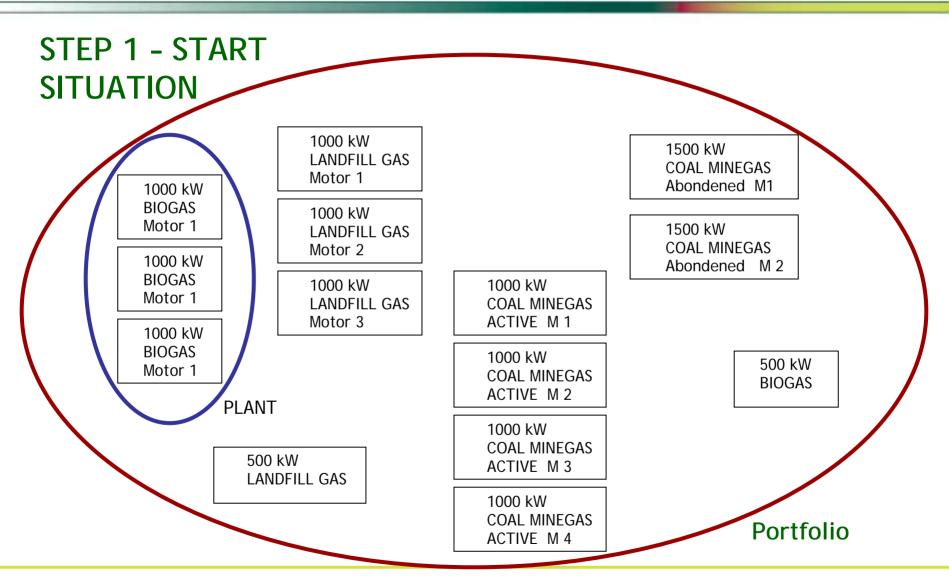
Detected problems - Flare and booster station

- The minimum flow of the flare too high (appr. 2000 Nm³/h).
- Methane analysing system
- No oxygen analyser
- Flow regulation
- CH4-based suction



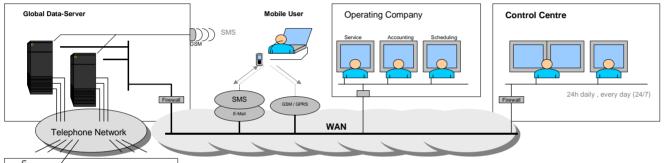
Objectives

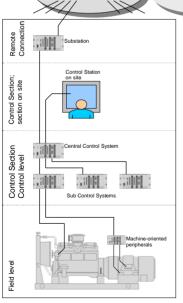
• Top-performing Plant Control (example)


Green Gas Germany GmbH

Basic principles of the Portfolio Management

Green Gas Germany GmbH





STEP 2 - REMOTE CONTROL CENTER

Assembly - Data Publisher

Overview of the essential parts of Kuhse Data Publisher

- DP-Navigator Client-Software
- Master-Server
- TCP/IP protocol for internet connection
- Modem an telephone network
- Telecontrol substations
- system control (switchboard)

STEP 3 - ENERGETICAL DATA COLLECTION

- Gas
- Volume Flow
- Methane Value
- Carbon Dioxide Value
- Oxygen Value
- Suction Pressure
- Gas Temperature
- Operation Hours
- Maintenance Hours
- Electrical Output

STEP 4 - EVALUATION OF THE COLLECTED DATAS

- Comparison between gas engine consumption and recent gas situation
 (volume flow x methane value = available gas performance)
- Operation hours X < 8760 h/a?
- Average of power generation < installed power capacity

STEP 5 - BALANCE BETWEEN DEMAND / EQUIPMENT

Equipment	Plant	Demand	Recommendation
Gas Consumption in kW		Gas Consumption in kW	
3000	А	5000	ADD Power
5000	В	3000	DROP Power
3000	С	3000	Stay
1000	D	100	Close

5 steps for successful operations

- 1. Analysing the situation
- 2. Adopting the current operation to
 - technical needs
 - environmental needs
 - economical needs
- 3. Training staff on site
- 4. Ongoing improvement of the operation
- 5. Experience

Thank you for your attention!

Green Gas Germany GmbH Hessenstrasse 57 D- 47809 Krefeld

Dr. Markus Francke Director CDM Landfill Tel.: +49 (0) 2151 - 5255-300 Fax.: +49 (0) 2151 - 5255-540

Email: m.francke@g-a-s-energy.com

