In-Seam Directional Drilling and Gas Drainage Demonstration Project – Baijigou, PR China

Frank Hungerford
Valley Longwall Drilling
Baijigou Service Project

- CAMDA – AMSI hold contract to gas drain Baijigou longwall blocks
- GeoGAS consulted for gas content and drainage characteristics
- Drilling Project in 2 components
- VLD to complete the underground component
- Mitchell Drilling to complete the SIS component
Location - Ningxia
Mine Audits

- Mine Safety - safe to operate in?
- Seam conditions – is the coal drillable?
- Drilling applications
- Services – air, water, power – fittings
- Access, transport, dimensions
- Surface facilities
- Accommodation
- Location, access to mine site
Initial Audit Results

• Cross-measure drilling from under the seam
• Stone strength apparently f_2 (20 MPa)
 – Revised to f_7-f_{12} (70-120 MPa)
• Angled drilling would require rig with vertical adjustment – Modular
• Mono-rail requirement for each site
• Design straight stone sections to allow for rotary roller-cone drilling if required
Baijigou Rotary Gas Drainage

Baijigou Rotary Cross-Section

Vertical Displacement (m)

Seam

66 deg

55 deg

67 deg

40 deg

1640 Roadway

Baijigou Rotary Cross-Section

-150 -100 -50 0 50 100 150
Initial Borehole Layout - Baijigou Mine
Modular Rig – Feed Frame
Modular Rig – Operators Console
Site Preparations

INITIAL STUB TO BE 6 METRES WIDE X 11.5 METRES DEEP - REVIEW AFTER FIRST SITE

VENT TUBE

FAN

GAS PIPELINE

MANIFOLD/Dewater

MONORAIL - PLACED CENTRALLY

BOLTS IN ROOF ACROSS FACE TO HANG HOSES FROM STANDPIPES

BOLTS ALONG RIB TO PULL EQUIPMENT INTO POSITION
Site Layout - Baijigou Mine
Drill Site – Side View
Gas Manifold – Drill Site
Drill Site – Rig Alignment

Rig aligned parallel to 280.0 deg line in position to suit site layout

Vertical angle as close to 29 deg as manageable
Drilling Design

- Rotary roller-cone 150mm x 3m - standpipe
- Rotary roller-cone 98mm to coal
- Directional drill up into seam roof
- Branch from coal intersect and follow 8m line below roof
- 1.5 deg/6m lateral curve and 1.0 deg/6m vertical curve (combined 1.8 deg/6m)
- Regular sharp roof intersections for profile definition – unstable upper seam coal
Profile Design

Baijigou B1 - Borehole Depth (m) vs. Vertical Displacement (m)

Road
Lateral Design

Target Azimuth 305.0 deg

Roadway - borehole has to be outside 100m Left

Entry Heading 280.0 deg

Baijigou B1 - Down Track (m)

Lateral Deviation (m)
Lateral Design – multiple legs

Target Azimuth 305.0 deg

Entry Heading 287.0 deg
Profile Design

Baijigou B2,B3 - Borehole Depth (m)
Vertical Displacement (m)

Right-hand Leg 3m Lower
Drilling – Site A

- Directional drill with 98mm roller-cone to coal for directional control
- Tungsten tip rollers for better performance
- Seam intersected 26m up at 85m hole depth
- Upper section of seam boggy
- Drilled 2677m to maximum depth of 1023m at 89.9 m/shift
- Terminated 1st branch covered with 2nd branch
Lateral Deviation

Target Azimuth 215.5 deg
Lateral Plot - Borehole B1

Target Azimuth 305.0 deg

Roadway - borehole has to be outside 100m Left

Entry Heading 284.2 deg (280.0 deg)
Baijigou Project Time Analysis

VALLEY LONGWALL DRILLING

PROJECT DRILLING PERFORMANCE

<table>
<thead>
<tr>
<th>Code</th>
<th>Activity</th>
<th>Stat</th>
<th>Time (mins)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DA</td>
<td>Drilling</td>
<td>D</td>
<td>41465</td>
</tr>
<tr>
<td>DB</td>
<td>Flushing</td>
<td>L</td>
<td>4745</td>
</tr>
<tr>
<td>DC</td>
<td>Pull Rods</td>
<td>L</td>
<td>7465</td>
</tr>
<tr>
<td>DD</td>
<td>Branching</td>
<td>L</td>
<td>2095</td>
</tr>
<tr>
<td>DE</td>
<td>Commission Hole</td>
<td>L</td>
<td>1025</td>
</tr>
<tr>
<td>DF</td>
<td>Commission Niche</td>
<td>L</td>
<td>540</td>
</tr>
<tr>
<td>DG</td>
<td>Reaming</td>
<td>L</td>
<td>960</td>
</tr>
<tr>
<td>1</td>
<td>Travel In</td>
<td>A</td>
<td>10610</td>
</tr>
<tr>
<td>1a</td>
<td>Travel Out</td>
<td>A</td>
<td>9960</td>
</tr>
<tr>
<td>2</td>
<td>Risk Assess</td>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td>2a</td>
<td>Establishment S-U/G</td>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Meetings</td>
<td>A</td>
<td>1920</td>
</tr>
<tr>
<td>4</td>
<td>Rig Move</td>
<td>A</td>
<td>9000</td>
</tr>
<tr>
<td>5</td>
<td>Ream & Grout S/pipe</td>
<td>A</td>
<td>2565</td>
</tr>
<tr>
<td>8</td>
<td>Waiting, Inspection</td>
<td>M</td>
<td>1820</td>
</tr>
<tr>
<td>10</td>
<td>Induction, RPL</td>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>Core</td>
<td>L</td>
<td>500</td>
</tr>
<tr>
<td>13</td>
<td>Rig Breakdown</td>
<td>V</td>
<td>2220</td>
</tr>
<tr>
<td>14</td>
<td>DGS Breakdown</td>
<td>V</td>
<td>1075</td>
</tr>
<tr>
<td>15</td>
<td>Mine Delays</td>
<td>M</td>
<td>13350</td>
</tr>
<tr>
<td>16</td>
<td>Environment</td>
<td>M</td>
<td>2235</td>
</tr>
<tr>
<td>17</td>
<td>Drill Niche Preps</td>
<td>M</td>
<td>790</td>
</tr>
<tr>
<td>18</td>
<td>VLD Delays</td>
<td>V</td>
<td>16150</td>
</tr>
</tbody>
</table>

Activity Group

<table>
<thead>
<tr>
<th>Activity Group</th>
<th>Status</th>
<th>Minutes</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drilling</td>
<td>D</td>
<td>41465</td>
<td>31.8</td>
</tr>
<tr>
<td>Drill Activity</td>
<td>L</td>
<td>17330</td>
<td>13.3</td>
</tr>
<tr>
<td>Activities</td>
<td>A</td>
<td>34055</td>
<td>26.1</td>
</tr>
<tr>
<td>VLD Down</td>
<td>V</td>
<td>19445</td>
<td>14.9</td>
</tr>
<tr>
<td>Mine Down</td>
<td>M</td>
<td>18195</td>
<td>13.9</td>
</tr>
</tbody>
</table>

![Pie chart showing percentage of drilling, activities, and other delays]
Drilling Performance
to 20 October

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Minutes</td>
<td>130,490</td>
</tr>
<tr>
<td>Total Shifts</td>
<td>181.2</td>
</tr>
<tr>
<td>Total Metres</td>
<td>15,267</td>
</tr>
<tr>
<td>Metres Coal</td>
<td>13,221</td>
</tr>
<tr>
<td>Metres Stone</td>
<td>2,046</td>
</tr>
<tr>
<td>Metres/Shift</td>
<td>84.2</td>
</tr>
</tbody>
</table>
Surface to In-Seam

- Extremely rough surface environment
- Influences from previously excavated seams above the target Yanan #2 seam.
- Low pore pressure of the coal
- Bogged and could not recover a drill string
- Under-balanced drilling required to succeed but expensive
- Discontinued – to be replaced with underground boreholes
Conclusions

- Baijigou project has demonstrated a successful provision of gas drainage drilling services
- A project managing company (CAMDA) is crucial to providing management and interface between drillers and mine.
- The audit process is critical to the successful planning and implementation of each project
- VLD drillers offer the most extensive experience due to wide exposure in China