





#### **Contents**





- 2. Key technologies to be developed
- Demonstration and application projects
- 4. Conclusions

# 1. Problems with crop residues and solutions

#### 1.1 Resource:

- China is one of the largest agricultural countries in the world with 0.9 billion farmers
- Crop residues -0.6 billion tons/a, corn stover, rice straw, and wheat straw are three major ones.
- About 50% used, leaving the rest (50%) unused.





#### Environmental pollutions

Open-field burning-air pollution, fire disaster, traffic and aircraft safety.

#### Lack of feedstock for biogas production

- China has set the goal of 15% renewable energy in total energy consumption by 2020, biogas would be one of major contributors for reaching this goal;
- There are 22 million household small digesters exist, 20 million will be built by 2010 according to state plan;
- However, currently, animal manures are main feedstocks for biogas production, which are not











#### 1.3 Utilization methods

- There are a number of utilization methods such as animal feed, direct combustion, gasification, pelletization etc.
- Anaerobic digestion is one of the effective technologies.
- However, most feedstocks used are readily biodegradable materials such as manure, food wastes, sludge etc.., very few attempts have been made to use crop residues for biogas production.

#### 1.4 Reasons for not being used

- High percentage of lignocelluloses, which is not readily biodegradable.
- Low digestion rate and biogas yield .
- Specific material properties such as low density, large volume, and non mobility.

\_\_\_\_Conventional AD technologies are not suitable to crop residues biogasification.

### ០វេលលោកម៉ើម៉ែម៉ែម៉ូ០ ១០១០១០១០១០១០១០១០





2. Key Technologies to be Developed

Anaerobic digestion technology is able to conversion from crop into bioenergy and fertilizer, if following key technologies are successfully developed.

(1) Pretreatment

\_improve biodegradability and increase yield

(2) Specifically-designed bioreactor

\_provide suitable place for bacteria growth

(3)Optimized operational parameters

-provide optimal living conditions for bacteria

០វិទាសាសាស៊ីវិទាស្រីស្រាសាសាសាសាសាសាសាសាសា

#### (1) Pretreatment



#### Cellulose

A linear polymeric compound which is built up by coupling β、D-glucose using 1,4-glycosidic bonds.





#### Hemicellulose

#### group of polysaccharides

Poly-O-acetyl-4-O-methyl-glucuronic acid-xylose

Poly-glucose-mannose



#### Lignin

It is built up by oxidative coupling of three major  $C_6$ – $C_3$  units, which forms a randomized structure in a tri-dimensional network inside the cell walls.

Guaiacyl alcohol (G)

Syringyl alcohol(S)

p-Coumaryl alcohol(H)

#### (1) Pretreatment-purposes



- •Break-down the linkages between lignin, cellulose, and hemicell ulose \_make more compositions more accessible;
- •Decompose lignin, cellulose, and hemicellulose biodegradable;
- •Destroy micro-structure of cell wall -enlarge contact surface



#### ០០០០០០មើរទីថ្ងៃស្រី២០០០០០០០០០០០០

#### (1) Pretreatment-methods



#### Physical methods

- Mechanical treatment, Steam-explosion, Microwave treatment
  - \* Not very effective, sometimes high energy, expensive
- Biological methods
  - **SOUSING SOME FUNGI and Enzymes** 
    - \* High requirements, high cost, hard to be applied in practice
- Chemical methods
  - MAlkali treatment, Acid treatment, Oxidation
    - Easy, Cheap, good effect, but may cause pollution

Solid-state pretreatment with Sodium Hydroxide(NaOH) was chosen and used in our study:

easy, cheap, fast, no second-time pollution

0101010181818188001010101010101010101

### Solid-state chemical pretreatment of corn stalk





### (2)Specifically-designed bioreactor



#### Experimental setup







### (2) Specifically-designed bioreactor







### (2) Specifically-designed Anaerobic Digester (50m3



### (2) Specifically-designed Anaerobic Digester (50m3)







## Daily biogas production —chemical litreated corn stalk











#### Recommendation:

Chemical pretreatment + digested at optimal loading rate — more than 50% increase of biogas yield



#### Methane content



Fig. 6 Comparison on methane content for untreated and NaOH-treated



### DT<sub>90</sub> --Digestion Time (90% total biogas production)

| Loading rate/g.l <sup>-1</sup>                | 35   | 50   | 65   | 80   |
|-----------------------------------------------|------|------|------|------|
| DT for Untreated /d                           | 53   | 56   | 58   | 71   |
| DT for treated/d                              | 29   | 39   | 44   | 38   |
| Time reduced/d                                | 24   | 17   | 14   | 33   |
| Production efficiency or capacity increased/% | 45.3 | 30.4 | 24.1 | 46.5 |

Table 3  $DT_{90}$  for untreated and treated corn stovers at four loading rates

### Extraction and purification of cellulose, hemicellulose and lignin









## 4. Demonstration-Shandong

9 reactors with total capacity of 450 m<sup>3</sup> each, are able to provide cooking energy for 100families.





## 4. Demonstration-Shandong



























#### **Ecological System**



## 4. Application-Beijing





Flow chart of biogas production from crop residues



## 4. Application-Beijing

4 reactors with capacity of 1000 m<sup>3</sup> total, are able to provide cooking energy for 300families.



## 4. Application-Beijing





atatatat8181990101010101010101010101



## 4. Application-Beijing







## Desulfiding and dewatering







atatatat8181818101010101010101010101



## 4. Application-Beijing





#### 5. Conclusions



- 1. Close attentions need to be paid to crop residues in order to mitigate increasing environmental problems (CO2) with crop problems as well as use biomass resources for bioenergy production.
- 2. Pretreatment, specifically designed bioreactor, and optimized operation parameters are key technologies, which need to be developed in order to efficiently convert crop residues into biogas.
- 3. Feedstock for biogas production will be solved effectively by using crop residues.



李秀金

北京化工大学环境科学与工程系

电话: 13661070453