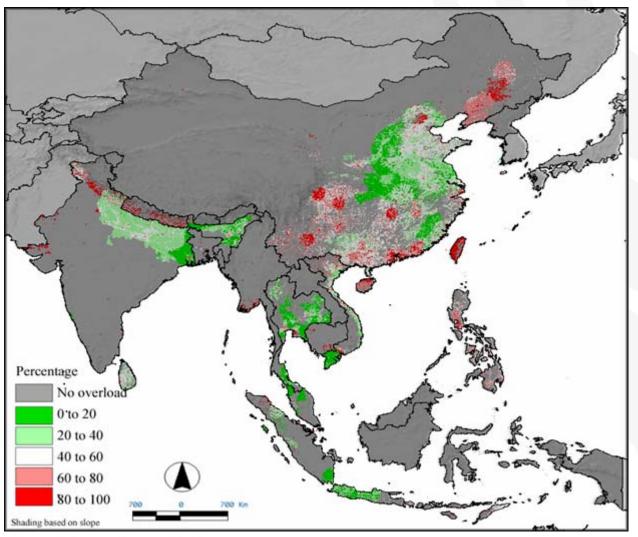


Farm location, access to technology and manure management practices Insights from a case study on pig production in central Thailand

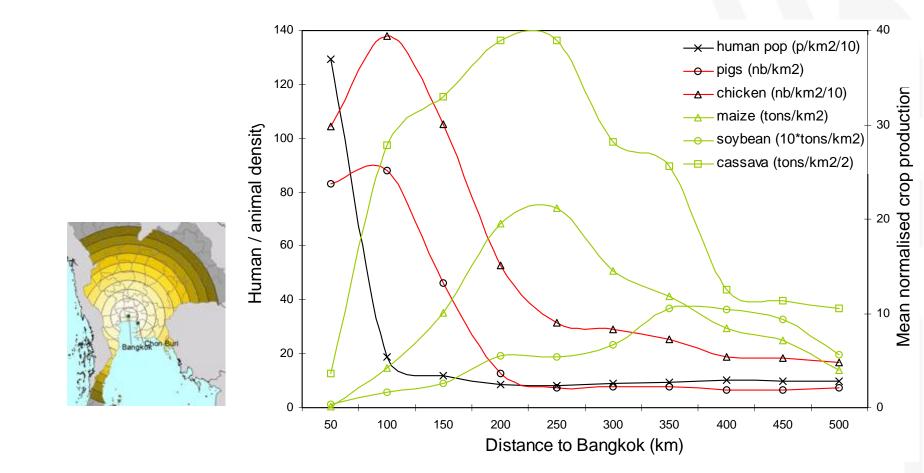
Methane to Markets Partnership Expo

Beijing, China 31 OCTOBER 2007



Agriculture Department

Estimated hotspots for nutrient overloads : Contribution of livestock



- ca. 24% of the crop area characterised by an overload (>10 kg P₂O₅/ha/year)
- Livestock contributes to ca.
 39% of the P₂O₅ agricultural supply
- Hotspots in periurban areas and livestock specialised areas

Agriculture Department

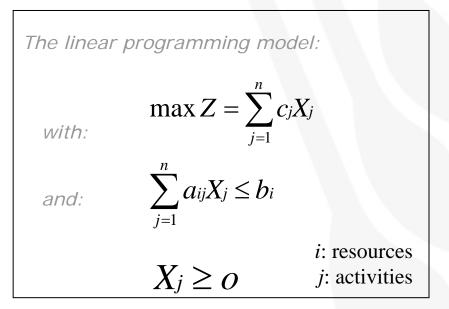
Spatial distribution of humans, livestock and feedcrops around Bangkok, 2001

Agriculture Department

Purpose of the study

- Investigate the farm location effect on waste management practices
- Test the relative cost effectiveness of various policy options
- Test the effects of environmental policies on the sector's competitiveness.

Material and Methods (1)



Method

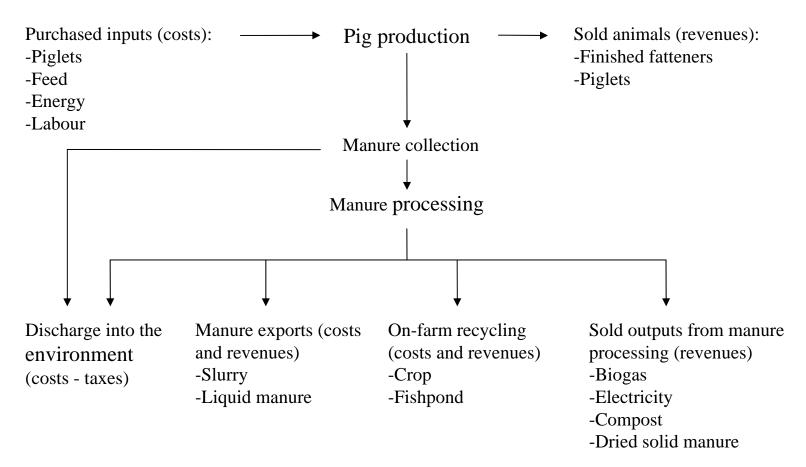
- Farm model
- Linear Programming (Hazell and Norton, 1986)
- Material flow accounting for Nitrogen, Phosphorus and water

Data

- Field survey
- Expert knowledge
- Thai Department of Livestock Development statistical yearbooks (1984 to 2004)

Material flow accounting

$$\sum_{a} e_{a} = \sum_{m} d_{m} + r_{m} + \chi_{m} + l_{m}$$


a: animals *m*: management practices

Agriculture Department

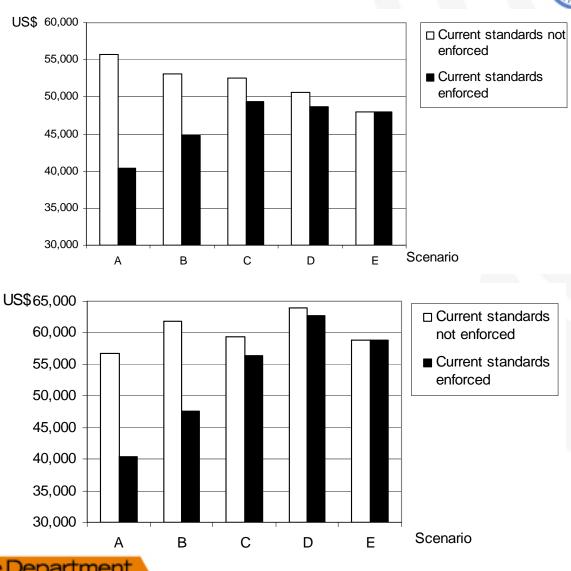
Material and Methods (2)

Farm model

Agriculture Department

Material and Methods (3)

Saanania	Peri-urban		Rural		Cropping
Scenario	А	В	С	D	E
market demand for solid manure and compost	no	no	yes	yes	yes
market demand for slurry / liquid manure / digester outflow	no	no	no	no	yes
Possibility for the farm to crop on its own land	no	no	crop	crop	crop
Possibility for the farm to use biogas and/or electricity	no	yes	no	yes	yes
Transport cost for feed (\$ per ton)	0	0	0	0	4
Transport cost for finished fatteners (\$ per head)	0	0	0.2	0.2	0.5
Transport cost for piglets (\$ per head)	0	0	0.1	0.1	0.25
Land price (\$ per ha)	30,000	30,000	9,000	9,000	4,500
Standing pig population (heads more or less 10%)	2,000	2,000	2,000	2,000	2,000
Farm area (ha)	1	1	1	1	1


Agriculture Department

Results (1)					
Scenario	A Peri- urban	B Peri-urban with biogas prod.	C Rural	D Rural with biogas prod.	E Rural with
Modelled farm performance under NO ENVIRONMENTAL POLICY					
N _{total} discharged by the production site (t/year)	19.8	17.9	15.7	14.2	0
BOD discharged by the production site (t/year)	220.0	76.1	65.6	19.7	0
N_{total} recycled on the farm (kg/year)	0	0	96.1	90.8	105.8
Modelled farm performance under CURRENT STANDARDS					
N _{total} discharged by the production site (t/year)	1.2	1.2	3.0	3.0	0
BOD discharged by the production site (t/year)	1.5	1.5	1.5	1.5	0
N _{total} recycled on the farm (kg/year)	0	0	25	38.1	105.8

Agriculture Department

Results (2)

Yearly **profit from pig marketing** under selected location and policy scenarios

Yearly **farm profit** under selected location and policy scenarios

Agriculture Department

Results (3)

Variation of farm profit per unit of N emissions reduction for selected scenarios, with reference to location A under no enforcement of discharge standards US\$/Kg 3 □ Current emission standards not enforced 2.5 Current emission 2 standards enforced 1.5 1 0.5 Scenario 0 -0.5 -1 D*# Е^{* # §} в* $C^{\#}$ * Biogas production А # Manure market Peri-urban Rural § Slurry market

Agriculture Department

Conclusions (1)

- Farms located in peri-urban environments have greater costs of compliance with pollution control measures than farms located in rural areas (ca. US\$15,000 Vs ca. US\$3,000)
- In rural areas we observe win-win situations: increase in farm's profit with reduction of N emissions
- Relocating farms would achieve a reduction of pollution but generally not entirely solve the pollution issue

Agriculture Department Animal Production and Health Division

Conclusions (2)

Policy implications

- Win-win situations are found on a minority of farms: policies are required for a large adoption of improved manure management practices: in most cases, improving manure management practices will have a net cost for the farmers
- Generally no impact of environmental policies on sector's competitiveness
- Environmental policies should be enforced gradually and include a strong capacity building component
- Policy should aim at a better spatial distribution of production units
- Complementarities among policy instruments: spatial distribution, emissions from the production site and manure recycling

Agriculture Department

Pollution control instruments for intensive animal production

Mechanism	Level of application			
	Inputs/practices	Emissions		
Taxes/subsidies	 Charges on fertilises Subsidies for manure management facilities Subsidies for retiring resource from production Subsidies for improved animal feed 	 Charges on modelled pollution emissions Charges on nutrient applications in excess of crop needs 		
Standards and regulation	 Land use planning Environmental permits Compulsory nutrient management plans Feed additives and drugs regulation Regulations on manure storage 	 Discharge standards Ban on manure discharge to surface water Regulations on land application of manure 		
Markets		- Tradable rights and quotas		

Agriculture Department

Pollution control instruments for intensive animal production

Mechanism	Level of application		
	Inputs/practices	Emissions	
Contracts/bounds	 -Contracts involving the adoption of best manure management practices -Contracts with local communities or private sector for pollution reduction 		
Communication	-Awareness raising of farmers -Capacity building on good manure management practices	-Awareness raising of farmers and communities	
Liability	-Negligence rules	-Strict liability / negligence rules	

Agriculture Department

Nitrate leaching in Denmark

N-leaching in Danish Municipalities (Kg N per ha)

Agriculture Department