Livestock's Long Shadow Environmental Issues and Options

Pierre Gerber Methane to Markets Partnership Expo Beijing - 30 October 2007

Henning Steinfeld Pierre Gerber Tom Wassenaar Vincent Castel Mauricio Rosales Cees de Haan

Drivers of the Livestock Sector

- Demand Drivers
 - Population growth: + 50 % by 2050 globally; slowing down in East Asia, still strong elsewhere in developing countries

introduction

- Income growth: strong in E and S Asia, NENA and SS Africa picking up
- Urbanization: more than 80 % of population growth occurs in cities of developing countries
- Supply Drivers
 - Cheap grain: decreasing prices over the past four decades
 - Technological change: genetics, feeding, transport
 - Cheap energy: substantial externalities
 - Policy environment: incentive frameworks, market and credit regulation, sanitary standards, labour and environmental policies

Broad trends: soaring output and underlying of structural changes

- Growing intensities
- Increasing scales
 - Vertical integration/longer food chains
- Geographic shifts / geographic concentration

Estimated distribution of livestock production 01 systems

introduction **01**

Quantification of environmental impacts: approach

- Global issues:
 - land use
 - climate change
 - water resources
 - biodiversity
- Analysis of impacts using a food chain approach (from feed production to product)
- Identification of technical and policy mitigation options

livestock in geographic transition 02

Review of impacts

Land use

- Pastures: 3.4 billion hectares (26% of emerged lands)
 - wide range of production intensities
 - marginal land frontier is exhausted
 - 20% of rangeland are estimated to be degraded UNEP (up to 73% in the drylands)
- 470 million hectares of arable land dedicated to animal feed production (ca. 33% of overall arable land)
- Geographical trends:
 - Intensification
 - geographical concentration
 - Increased reliance on transport

livestock in geographic transition 02

Trends in land-use area for livestock production and total production of meat and milk

livestock in geographic transition 02 Estimated feed surplus/deficit – soymeal (pig and poultry)

Review of impacts

Green House Gas Emissions

- How large is the livestock sector's contribution?
- What are the options to mitigate GHG emissions?

Approach

Emissions from feed production

- Fertilizer manufacturing and application
- On-farm fossil fuel use
- Livestock-related land use changes
- C release from soils

[Savannah burning]

Emissions from livestock rearing

- Methane from enteric fermentation
- Methane from animal manure
- Nitrous oxide

[Respiration by livestock]

Emissions from livestock processing, refrigeration and transport

Livestock related land use change: Deforestation in the Neotropics

Carbon release from soils

- Conventional tillage of land for intensive feed cropping $\rightarrow \sim 18$ million tons CO₂
- Soil liming in tropical areas $\rightarrow \sim 10$ million tons CO₂
- Pasture desertification in drylands $\rightarrow \sim 100$ million tons CO₂

CO₂ emissions from processing and refrigerated transport

- Emissions from processing are in the order of several tens of million tons CO₂
- Emissions from meat transport estimated at <u>0.8 1 million ton CO₂</u>

Resulting Overall Contribution

About 2.7 billion tons CO_2 : <u>9% of total anthropogenic CO_2 emissions</u>

Methane released from enteric fermentation

Assessment per region and livestock production system

Resulting total of <u>86 million tons CH₄ per year</u>

Methane released from animal manure

Assessment per region and livestock production system, using updated emissions factors

Resulting total of <u>18 million tons CH₄ per year</u>

Resulting Overall Contribution

About 2.2 billion tons CO_2 equivalent: 37% of total anthropogenic CH_4 emissions

N emissions	N ₂ O million tons N	NH ₃ million tons N
from feed-crop related fertilizer	0.2	3.1
from leguminous feed crops	>0.5	
from aquatic sources following fertilizer use	0.2	-
from stored manure	0.7	2
from applied or deposited manure	1.7	20
following application/deposition	0.4	-

Resulting Overall Contribution

 N_2O About 2.2 billion tons CO_2 equivalent: 65% of total anthropogenic N_2O emissions

NH₃ 64% of total anthropogenic NH₃ emissions

Relative contributions along the food chain

About 7.1 billion tonnes CO₂ equivalent or 18% of total anthropogenic GHG emissions (2/3 from extensive systems and 1/3 from intensive systems)

...but variable across the world (eg. 60% of Brazil's emissions)

- Land use and Land Use Change : 36%
- Feed Production: 7%
- Animals: 25%
- Manure Management: 31%
- Processing and Transport: 1%

Mitigation Options (1)

Control LUC :

agricultural intensification, avoiding change

adoption of more sustainable practices, mitigating the impact (silvo-pastoral systems, conservation agriculture)

Conserve/restore C and N in cultivated soils:

agricultural intensification – conservation tillage – erosion reduction

Mitigate C loss from pasture soils:

silvo-pastoral and agro-forestry systems in the humid tropics

improved grazing management in drylands (and also fire management, grass production enhancement, ...)

livestock's role in climate change & air pollution 03 Mitigation Options (2)

Enteric fermentation:

improved efficiency and diets

Manure:

balanced feeding, reducing methane emissions and lowering the N content

anaerobic digestion:

reducing methane emissions (>50%), near elimination of ammonia volatilization, reducing N_2O emissions from subsequent application

fine tuning of waste application to land

livestock's role in water depletion and pollution **04**

Review of impacts

Water resources

- Livestock sector represents 8% of all entropic water use, 90% of which for feed production.
- Feed production: 15% of evapotranspiration in agriculture (irrigated)
- Overall pollution: hardly quantifiable but substantial at feed production, animal production and processing levels (nutrients, organic matter, antibiotics, pesticides)
- impact on water cycles

livestock's role in water depletion and pollution **04**

Livestock and Water: Technical Mitigation Options

- Improved water use efficiency
 - Irrigation efficiency
 - Water productivity

Enhance waste management

- Production stage: balance feed, phase feeding, supplements
- Improved manure collection process
- Manure storage and processing
- Improved utilization of waste

• Land management

- Adapted grazing systems, range improvements, critical periods
- Improving livestock distribution

livestock's impact on biodiversity **05**

Review of impacts

Biodiversity

- Main mechanism habitats degradation/destruction:
 - deforestation
 - pollution
 - desertification
 - intensive agriculture
- Fishmeal production causing over fishing
- → IUCN identifies livestock as one of the threats to 1699 endangered species (red list)

Livestock and Biodiversity livestock's impact on biodiversity 05 Technical Mitigation Options

Biodiversity loss often results from environmental degradation → Many options previously presented apply

- Intensify land use to reduction of pressure on natural land and habitat
- Improve land and pest management practices
- Integrated agriculture: response to excessive chemical use
- Conservation agriculture: restore habitats
- Combine field level improvements with ecological infrastructure conservation/restoration at landscape level

Hotspots of environmental impact

	Climate	Water	Biodiversity
Pasture and feedcrop expansion into natural ecosystems	+++	+	+++
Rangeland degradation	+++	++	++
Contamination in intensive production areas	+	+++	++
Intensive feedcrop agriculture	++	++	++

Underlying causes (i)

- Neglect of externalities
 - negative externalities, e.g. water and soil pollution, climate change, biodiversity losses, etc.
 - positive externalities, e.g. carbon sequestration, ecosystem diversitybiodiversity gains
- Inadequate pricing
 - At input level, e.g. land water
 - At output level, e.g. subsidies

Underlying causes (ii)

- Livestock production concentrates
 - The clustering of livestock close to feed outlets, consumption centres leads to nutrient overloads
 - Disruption of nutrient cycling
- Mismanaged grazing
 - lack of stewardship in marginal and remote areas
- The multiple objectives pursued with livestock

Principles for policy intervention (i)

- Get prices right: Inefficiencies in resource use, often increasing use and leads to misallocation of resources among competing uses (within and outside agriculture)
- Apply "Polluter pays, provider gets" principles
 Payment for environmental services could be a major tools to shift to "service-oriented" grazing (making carbon sequestration, water and biodiversity protection a major purpose of extensive systems)

Principles for policy intervention (ii)

- Seek livestock/ecosystem balances: Bring livestock in balance with surrounding land. The need for intensification of production (without concentration)
- Develop institutions for environmental stewardship
- The importance of liability
- The need to educate and inform

The social and health dimensions

Environmental policies should be designed and implemented in the context of social and health objectives:

- 1.3 billion people depend (partially or entirely) on livestock for their livelihoods
- The cultural dimension of livestock
- Livestock provide protein and micro-nutrients to many of the 830 million food insecure people
- Livestock contributes to health problems of the affluent (obesity, cancers, cardio-vascular diseases

Livestock's Long Shadow

Download from: www.virtualcentre.org

Order a hard copy from FAO's Animal Production and Health Division website

Henning Steinfeld Pierre Gerber Tom Wassenaar Vincent Castel Mauricio Rosales Cees de Haan

