

Co-digestion at the Annacis Island Wastewater Treatment Plant: Metro Vancouver's Path to Increase Energy Rich Biogas Production for Plant Use

Paul Lam; Echo Lin Methane Expo 2013 March 14, 2013 Vancouver

Metro Vancouver operates 5 wastewater plants serving a population of ~2 million

Annacis Island WWTP

What is Co-digestion?

Controlled direct feeding of high strength organic wastes to wastewater anaerobic digesters to generate energy-rich biogas

- New technology originally developed in Europe
- Large scale municipal waste application in Canada

Benefits of Co-digestion

Wastewater Liquid Stream

Background and Concept Development

- Major drivers for Co-digestion
 - Technical
 - Economic
 - Environmental
- Drivers for Annacis
 - Mitigation measures for Iona and Lions Gate WWTPs
 - Utilize surplus digester capacity
 - Provide better outlet for trucked liquid wastes
 - Carbon neutrality

Project Implementation -Scope Definition

- Scope definition started in 2008
 - Business Casing
 - Potential benefits
- Challenges identified
 - Digester overload
 - Biosolids quality/ quantity
 - Feedstock characterization
 - Uncertain market availability

Examples of Organic Wastes (Feedstocks) that can be used in Co-digestion System at the Annacis Island WWTP

Potential Financial Benefits

- Carbon credit 1,500 tonnes CO_{2e}/year
- Additional sludge gas production 2.6 million m³/year
- Potential revenue
 - through co-generation \$168 K/year or
 - through exporting gas \$ 490 K/year
 - through tipping fee \$ 572 K/year

Project Implementation - Design and Construction

- Design started in 2009 with construction completed in early 2011
- A fully automated system
- Organic wastes are screened and pumped to a storage tank for storage, mixing and homogenizing prior to being fed to the digesters
- Parallel 2 month full scale testing at Annacis in 2009

Co-digestion Pilot Project at the Annacis Island WWTP

Project Implementation - Operation

- Loads processed
 - FOG
 - Ethanol
 - De-icing fluid
 - Restaurant grease trap materials
- The biogas increase from co-digestion has been stable
- No significant negative impacts on the digester performance or the biosolids quality or quantity have been observed.

System Performance

Potential Risks

- Clogging of the screening system
- Upsetting the anaerobic digesters
- Creating digester foaming problems
- Feedstock supply uncertainty

Risk Mitigation Measures

- Developed a testing program including:
 - An operational protocol
 - A co-digestion system laboratory analysis
 - A screening tool to prioritize potential feedstocks
- Conducted a market survey to identify secure feedstock sources

Steps Forward

2013

- Continuous operation
- Pre-qualification process to select and test potential future feedstocks
- Business case for future expansion opportunities

2014

- Public tender process to secure long term supply

T'u