Best Practices to Select Internal Combustion Engines and Maximize the Success of Methane to Electricity Projects

Mauricio Lopez
Electric Power Gas Division
Caterpillar, Inc.

Methane Expo 2013
Vancouver, Canada
Objective

• This presentation is an add-on companion to GMI’s Best Practices.

• Provides four additional practices for better decisions in methane to electricity projects.

• Applies to all segments (Ag, Waste Water, etc.)
Agenda

1. Engine Technology
2. Gas Contamination
3. Engine Installation
1. Engine Technology

High Efficiency v. High Robustness
Internal Combustion Engine

• Invented by N. Otto, 1876
 – Traditional four-stroke cycle
• Improved by R. Miller, 1957
 – Changes valve timing, fuel mixture ‘supercharged’
 – Manages higher pressure inside the cylinders
 – Inherently more efficient
 – Requires closer control of air inlet temperature, fuel contamination, tolerances.
Which Technical Design Is Better?

It depends
Engine Design Trade-Off

High Robustness Engines (Traditional *Otto, non-Miller*)

- **CAPEX** ↓ **OPEX** ↑
- Accept higher siloxane and H2S contamination
- Efficiency below 40%
- Dirty gas forces more oil changes, higher M&O cost
- Excellent for: ‘dirty’ gas, worst-case ambient swings & quicker load response

High Efficiency Engines (*Miller* Cycle)

- **CAPEX** ↑ **OPEX** ↓
- Usually require costly siloxane & H2S removal
- Efficiency above 40%
- Lower M&O costs due to cleaner gas
- Excellent for: ‘clean’ gas, controlled environments, average load demands
Engine Technology Best Practice

• Run two separate economic evaluations of your methane to electricity project:
 – Scenario A: high efficiency engine (Miller)
 – Scenario B: high robustness engine (non-Miller)

• Include in your evaluation:
 – CAPEX: cost of siloxane and H2S removal equipment required by high efficiency engine
 – OPEX: additional M&O for siloxane/H2S removal units
 – Risk Factors: if cleaning equipment fails or under-perform, high efficiency engine will be quickly damaged
2. Gas Contamination

Removing Siloxanes and H2S
Why Siloxane and H2S?

• Siloxanes
 – Present in cosmetics, shampoo, detergents
 – Transform during combustion to SiO2. Sand in the engine!

• H2S (Hydrogen Sulphide)
 – Combusts to SO2 and H2O. Further transform to sulphurous/sulphuric acid.
 – Corrosion
Fuel Specification Guidelines

• All Manufacturers have guidelines for maximum fuel contamination. Warranty depends on compliance.
• Miller engine users strongly advised to stay within the limits of the ‘clean biogas’ definition

Sample Recommendation for Optimal Engine Application

*Based on 500 Btu/scf Fuel

<table>
<thead>
<tr>
<th>Fuel Contaminant</th>
<th>µg/Btu of Fuel</th>
<th>Approx. PPM*</th>
<th>µg/Btu of Fuel</th>
<th>Approx. PPM*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halides (as Cl)</td>
<td>20</td>
<td>230</td>
<td>0.55</td>
<td>7</td>
</tr>
<tr>
<td>Sulfur (as H₂S)</td>
<td>60</td>
<td>730</td>
<td>12.2</td>
<td>155</td>
</tr>
<tr>
<td>Siloxanes (as Si)</td>
<td>0.6</td>
<td>9.0</td>
<td>0.11</td>
<td>1.6</td>
</tr>
<tr>
<td>Ammonia</td>
<td>2.96</td>
<td>72</td>
<td>0.17</td>
<td>4</td>
</tr>
</tbody>
</table>
Economics of Siloxane Removal

• Recent 12MW LFGE project (6 engines)
 - Siloxane removal unit added 25% extra cost
• Recent 1-2MW quotes
 – 50-100% added cost.
• 1 MW and below
 – Siloxane removal costs as much as the engine!
• Cost becomes manageable if project is very large
3. Engine Installation Options

Building v. Container
Engine Installation Trade-Off

Building Installation
- Ample space for service personnel, cranes for safe lifting of heavy parts, controls & storage rooms
- Economies of scale for multi-engine buildings
- Easier to manage dust contamination and air inlet temperatures

Container Installation
- Restricted access and work space, more time & money on service steps
- Fast deployment, easier to quickly add or remove units
- Easier to obtain bank loans
- High reliability: complex systems integrated by engine manufacturer
4. Better Estimation of M&O Costs
Estimating Maintenance & Operation Costs

• Most financial evaluation tools use just one number for the M&O cost of a generator set
• Comparison of costs may not be appropriate without knowing the different elements that went into the M&O number
• Potential customers need to request separate estimates for different combinations of service
 – Window of time used for calculations is critical
 – Gas type used for calculations also critical
Cost per kWh, Cost per Running Hour

- L1-L7 are lists of different service alternatives
Need to Break Down O&M Elements

<table>
<thead>
<tr>
<th>Service list</th>
<th>L1</th>
<th>L2</th>
<th>L3</th>
<th>L4</th>
<th>L5</th>
<th>L6</th>
<th>L7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>4 x E10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15 x E30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12 x E40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 x E50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 x E60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[X]</td>
</tr>
<tr>
<td></td>
<td>1 x E70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 x TC01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 x TC02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 x Z01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Var. unsch. spare parts per engine and year: unscheduled assignments (wage)</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Exhaust Heat Exchanger inspection</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>EGHE repairs</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Silencer inspection</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Silencer repairs</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Oxicat inspection</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Oxicat renewing</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Cooling water pump inspection</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Cooling water pump repairs</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PHE, cooler inspection</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PHE, cooler repairs</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Batteries inspection</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Batteries repairs</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Gas control line inspection</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Gas control line repairs</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TEM, Switching system inspection</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>TEM, Switching system repairs</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Generator inspection</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Generator repairs</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Pneumatics inspection</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

- Included in cost?
 - Lube oil?
 - Major Overhaul?
 - Electrical Items?
 - Unscheduled Maintenance?
 - System Auxiliaries?
Thank You For Your Attention!

Mauricio Lopez
lopez_mauricio_a@cat.com
http://www.catelectricpowerinfo.com/gas/