ASSESSMENT OF SEALED OFF AREAS AT MOONIDIH MINE, INDIA

B.K. Prusty and A.K. Patra
Indian Institute of Technology Kharagpur

S. Harpalani
Southern Illinois University Carbondale
ACKNOWLEDGEMENT

Study was funded by USEPA

Permission was granted by Bharat Coking Coal Limited (BCCL), India
Outline of Presentation

• Coal mining/CMM in India
• Objective and scope of the study
• Study site/Moonidih Mine
• Sampling plan
• Results
• Proposed CMM recovery scheme
• Barriers
• Summary
Coal Mining in India

- Coal accounts for ~55% commercial energy
- Total coal reserve 246 BT
- India: 3rd largest coal producer in world
- Annual coal production 538 MT (2010-11)
- 85% from surface operations and 15% from underground mining
- 384 underground mines
- Degree I, II and III mines in order of gasiness
- 19 degree III gassy mines (> 10 m³/t of coal)
CMM Scenario in India

- No apparent CMM recovery activity in India
- U/g production decreasing
- Low priority
- Future demand to be met from u/g mining due to social problems with surface operations
- CMM will be important for deep coal mines
- One reason why CMM extraction has not started is the lack of scientific data on CMM resource and feasibility of extraction
Objectives

- Create scientific data base for possible CMM extraction scheme at a prospective Indian mine
- Evaluate a prospective Indian mine for potential CMM recovery and utilization
- Moonidh Mine was selected for the study – it is one of the gassiest in India
- Study was conducted between June 2010 and June 2011
Study Site/Moonidih Mine

• Very old mine (started in 1965)
• Deep (>600 m)
• Degree III gassy mine
• Longwall operation with caving
• Extensive gob area (67 sealed off areas)

Other advantages:
• CBM drilling from virgin seams
• Production of electricity using gas engines
Location of Moonidih Mine

Jharkhand State

Moonidih Mine
Borehole log of Moonidih Mine

A series panels
- **4.49 m**
 - XVIII Seam
 - Depth: 300.13 m
 - Depth: 304.62 m

- **1.16 m**
 - XVII (T) Seam
 - Depth: 378.54 m
 - Depth: 379.70 m

- **1.02 m**
 - XVII (B) Seam
 - Depth: 387.48 m
 - Depth: 388.50 m

D series panels
- **2.54 m**
 - XVI (T) Seam
 - Depth: 417.12 m
 - Depth: 419.66 m

- **2.23 m**
 - XVI (B) Seam
 - Depth: 493.98 m
 - Depth: 496.21 m

- **3.02 m**
 - XV (T) Seam
 - Depth: 594.10 m
 - Depth: 597.12 m

- **3.47 m**
 - XV (B) Seam
 - Depth: 600.88 m
 - Depth: 674.32 m

- **10.36 m**
 - XIV Seam
 - Jhama+MP
 - Depth: 684.68 m

- **6.74 m**
 - XIII Seam
 - Jhama+MP
 - Depth: 687.35 m
 - Depth: 694.09 m

Ground Surface
- Borehole closes at 872.00 m
Seam-wise Coal Reserve

<table>
<thead>
<tr>
<th>Name of the Seam</th>
<th>Geological Reserve (Mt)</th>
<th>Mineable Reserve (Mt)</th>
<th>Present Status of the Seam</th>
</tr>
</thead>
<tbody>
<tr>
<td>XVIII</td>
<td>13.40</td>
<td>7.9</td>
<td>Major part blocked within multiple faults. Sizeable area contains Jhama.</td>
</tr>
<tr>
<td>XVII (T)</td>
<td>12.60</td>
<td>5.3</td>
<td>Worked and exhausted</td>
</tr>
<tr>
<td>XVII (B)</td>
<td>18.90</td>
<td>4.85</td>
<td>Non-workable - thin seam</td>
</tr>
<tr>
<td>XVI (T)</td>
<td>21.30</td>
<td>9.06</td>
<td>Major part exhausted</td>
</tr>
<tr>
<td>XVI (C)</td>
<td>3.60</td>
<td></td>
<td>Jhama and stone intrusion</td>
</tr>
<tr>
<td>XVI (B)</td>
<td>22.10</td>
<td>7.72</td>
<td>Minor part workable; Dip side thinned; Nearly virgin; Development work started.</td>
</tr>
<tr>
<td>XV (T)</td>
<td>48.20</td>
<td></td>
<td>Totally virgin</td>
</tr>
<tr>
<td>XV (B)</td>
<td>58.70</td>
<td>11.80</td>
<td>Totally virgin</td>
</tr>
<tr>
<td>XV(C)</td>
<td>9.00</td>
<td></td>
<td>Totally virgin</td>
</tr>
</tbody>
</table>
Sealed Areas Studied

<table>
<thead>
<tr>
<th>Name of Panel</th>
<th>Name of the Seam</th>
<th>Depth of Working (m)</th>
<th>Panel Dimensions (m×m)</th>
<th>Date of Abandonment of Panel</th>
<th>Height of Working (m)</th>
<th>Volume of Worked Out Area (x 1000 m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>XVIII</td>
<td>320-400</td>
<td>212 × 144</td>
<td>27.05.1996</td>
<td>2.4</td>
<td>73</td>
</tr>
<tr>
<td>A2</td>
<td>XVIII</td>
<td></td>
<td>344 × 92</td>
<td>03.06.1999</td>
<td>2.4</td>
<td>76</td>
</tr>
<tr>
<td>A3</td>
<td>XVIII</td>
<td></td>
<td>520 × 92</td>
<td>26.02.2001</td>
<td>2.4</td>
<td>115</td>
</tr>
<tr>
<td>A6</td>
<td>XVIII</td>
<td></td>
<td>144 × 100</td>
<td>-</td>
<td>2.4</td>
<td>35</td>
</tr>
<tr>
<td>A7</td>
<td>XVIII</td>
<td></td>
<td>204 × 60</td>
<td>06.11.1996</td>
<td>2.4</td>
<td>29</td>
</tr>
<tr>
<td>D8</td>
<td>XVI (Top)</td>
<td>430-530</td>
<td>680 × 140</td>
<td>10.07.1998</td>
<td>2.4</td>
<td>228</td>
</tr>
<tr>
<td>D9</td>
<td>XVI (Top)</td>
<td></td>
<td>640 × 132</td>
<td>30.10.2001</td>
<td>2.4</td>
<td>203</td>
</tr>
<tr>
<td>D10</td>
<td>XVI (Top)</td>
<td></td>
<td>660 × 104</td>
<td>20.02.2002</td>
<td>2.4</td>
<td>165</td>
</tr>
<tr>
<td>D11</td>
<td>XVI (Top)</td>
<td></td>
<td>680 × 140</td>
<td>31.05.2004</td>
<td>2.4</td>
<td>228</td>
</tr>
</tbody>
</table>

Panels selected based on size, methane concentration, accessibility.
Surface Plan
Spot samples were collected at 15-day intervals.
Methane Concentration
Max-/ Min- Methane Concentration

The graph illustrates the maximum and minimum methane concentrations in different sealed off areas. The x-axis represents the sealed off areas (A1, A2, A3, A6, A7, D8, D9, D10, D11), and the y-axis represents the CH₄ concentration (%).
Classification of Sealed Areas

<table>
<thead>
<tr>
<th>Category</th>
<th>Methane Concentration</th>
<th>Sealed off Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>High methane concentration</td>
<td>> 70 %</td>
<td>A1, A3, A7</td>
</tr>
<tr>
<td>Medium methane concentration</td>
<td>25 - 70%</td>
<td>A2, A6, D8,</td>
</tr>
<tr>
<td>Low methane concentration</td>
<td>5 - 25%</td>
<td>D11</td>
</tr>
<tr>
<td>Very low methane concentration</td>
<td>< 5%</td>
<td>D9, D10</td>
</tr>
</tbody>
</table>
Estimated Methane in Sealed Areas

<table>
<thead>
<tr>
<th>Panel Name</th>
<th>Sealed off Panel Volume (m³)</th>
<th>Methane Emission (Min) (m³)</th>
<th>Methane Emission (Max) (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>73,267</td>
<td>249,592</td>
<td>436,786</td>
</tr>
<tr>
<td>A2</td>
<td>75,955</td>
<td>258,749</td>
<td>452,811</td>
</tr>
<tr>
<td>A3</td>
<td>114,816</td>
<td>391,132</td>
<td>684,481</td>
</tr>
<tr>
<td>A6</td>
<td>34,560</td>
<td>117,732</td>
<td>206,031</td>
</tr>
<tr>
<td>A7</td>
<td>29,376</td>
<td>100,072</td>
<td>175,126</td>
</tr>
<tr>
<td>D8</td>
<td>228,480</td>
<td>1,795,996</td>
<td>3,142,993</td>
</tr>
<tr>
<td>D11</td>
<td>228,480</td>
<td>1,795,996</td>
<td>3,142,993</td>
</tr>
</tbody>
</table>
CMM Recovery Potential of Sealed Areas

<table>
<thead>
<tr>
<th>Panel Name</th>
<th>Minimum Methane Volume (m³)</th>
<th>Minimum Methane Concentration (%)</th>
<th>CMM Recovery Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>249592</td>
<td>95</td>
<td>Good</td>
</tr>
<tr>
<td>A2</td>
<td>258749</td>
<td>66</td>
<td>Moderate</td>
</tr>
<tr>
<td>A3</td>
<td>391132</td>
<td>97</td>
<td>Good</td>
</tr>
<tr>
<td>A6</td>
<td>117732</td>
<td>49</td>
<td>Moderate</td>
</tr>
<tr>
<td>A7</td>
<td>100072</td>
<td>78</td>
<td>Good</td>
</tr>
<tr>
<td>D8</td>
<td>1795996</td>
<td>43</td>
<td>Moderate</td>
</tr>
<tr>
<td>D11</td>
<td>1795996</td>
<td>21</td>
<td>Low</td>
</tr>
</tbody>
</table>
Proposed CMM Recovery Scheme

- Seven panels are divided into two groups and CMM from two groups extracted alternatively until concentration reduces to 25%
- Group I: A1, A2, A7, and D11. Total CMM quantity: 2.4- 4.1 MMm³ with initial average concentration of ~ 50%
- Group II: A3, A6, and D8. Total CMM quantity: 2.3 - 4.0 MMm³ with an average concentration of ~62%
- Continuous and cyclic production of CMM from Group I and Group II panels
CMM Recovery and Barriers

- Most prospective utilization alternative is power generation by on-site combustion using IC engine

Barriers

- Priority (mining vs. methane extraction)
- Permission from DGMS: may not be easy, simple or quick
- Accessibility: some panels may be flooded and can not be accessed from underground
- Technical expertise lacking (in-seam drilling, deep drilling, well completion)
- Lack of pipeline infrastructure
Summary

• Study was carried out for 9 panels.
• 7 panels have good to moderate potential
• CMM recovery scheme was proposed with cyclic production from two groups of panels
• Barriers to CMM recovery were identified
• IC engine recommended as the most suitable option
THANK YOU!!!!

bkprusty@gmail.com