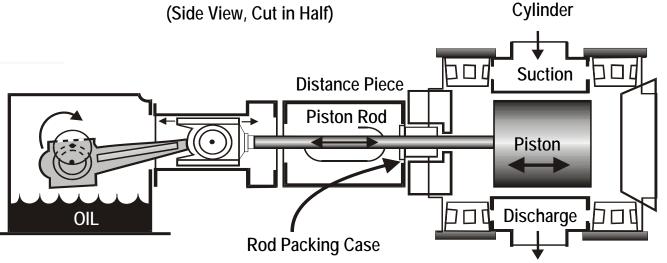
Methane to Markets

Reducing Emissions from Reciprocating and Centrifugal Compressors

International Workshop on Methane Emissions Reduction Technologies in the Oil and Gas Industry Lake Louise

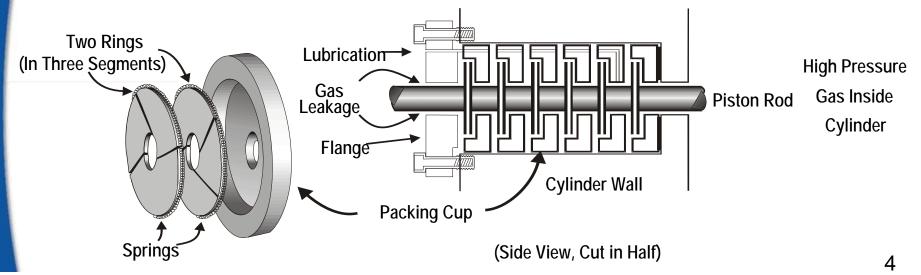
14-16 September 2009

Methane Savings from Compressors: Agenda


Reciprocating Compressors

- Methane Losses, Methane Savings, Industry Experience
- Centrifugal Compressors
 - Methane Losses, Methane Savings, Industry Experience
- Discussion

Methane Losses from Reciprocating Compressors


- Reciprocating compressor rod packing leaks some gas by design
 - Newly installed packing may leak 60 cubic feet per hour (cf/hour) (2 m³/hour)
 - Worn packing has been reported to leak up to 900 cf/hour (26 m³/hour)

Reciprocating Compressor Rod Packing

- A series of flexible rings fit around the shaft to prevent leakage
- Leakage may still occur through nose gasket, between packing cups, around the rings, and between rings and shaft

Methane Losses from Rod Packing

Emission from Running Compressor99 cf (3 m³)/hour-packingEmission from Idle/Pressurized Compressor145 cf (4 m³)/hour-packing

Leakage from Idle Compressor Packing Cup 79 cf (2 m³)/hour-packing Leakage from Idle Compressor Distance Piece 34 cf (1 m³)/hour-packing

Leakage from Rod Packing on Running Compressors						
Packing Type	Bronze	Bronze/Steel	Bronze/Teflon	Teflon		
Leak Rate (cf/hour)	70	63	150	24		
Leak Rate (m ³ /hour)	2	1.8	4.3	0.7		

Leakage from Rod Packing on Idle/Pressurized Compressors						
Packing Type	Bronze	Bronze/Steel	Bronze/Teflon	Teflon		
Leak Rate (cf/hour)	70	N/A	147	22		
Leak Rate (m ³ /hour)	2	N/A	4.2	0.6		

PRCI/ GRI/ EPA. Cost Effective Leak Mitigation at Natural Gas Transmission Compressor Stations

Methane to Markets

Steps to Determine Economic Replacement

- Measure rod packing leakage
 - When new packing installed after worn-in
 - Periodically afterwards
- Determine cost of packing replacement
- Calculate economic leak reduction
- Replace packing when leak reduction expected will pay back cost

Cost of Rod Packing Replacement

- Assess costs of replacements
 - A set of rings:(with cups and case)
 - Rods:
 - Special coatings such as ceramic, tungsten carbide, or chromium can increase rod costs

- \$1,350 to \$1,700
- \$ 2,025 to \$ 3,375
- \$2,430 to \$13,500

Calculate Economic Leak Reduction

- Determine economic replacement threshold
 - Partners can determine economic threshold for all replacements
 - This is a capital recovery economic calculation

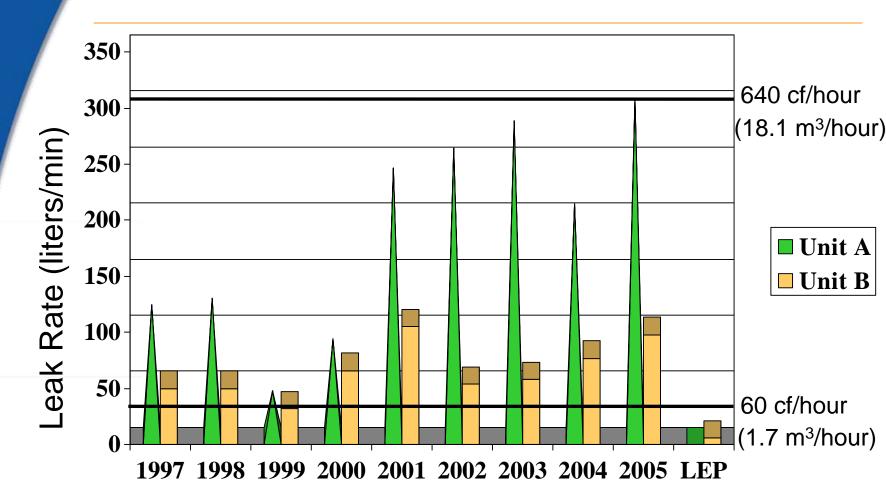
Economic Replacement Threshold (cf/hour) = Where:

$$\frac{CR*DF*1,000}{(H*GP)}$$

- CR = Cost of replacement (\$)
- DF = Discount factor at interest i =
- H = Hours of compressor operation per year
- **GP** = **Gas price (\$/thousand cubic feet)**

$$DF = \frac{i(1+i)^n}{(1+i)^n - 1}$$

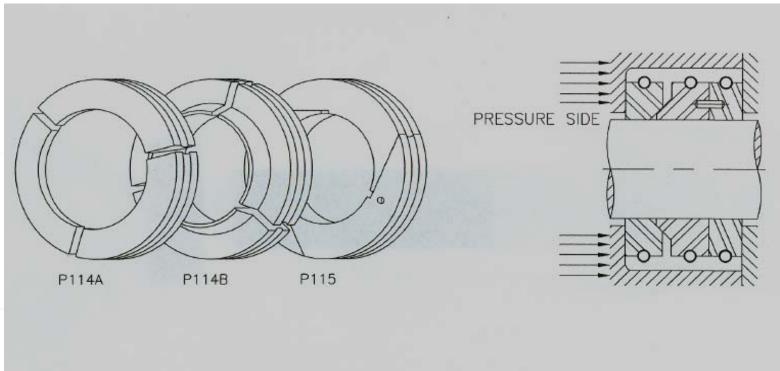
Methane to Markets Is Rod Packing Replacement Profitable?											
	 Replace packing when leak reduction expected will pay back cost 							will			
 – "leak reduction expected" is the difference between current leak rate and leak rate you expect with new rings 											
			Rings Or	nly			Ro	Rod and Rings			
	Rings: \$1,620			R	Rings: \$1,620						
	Rod: \$0		R	Rod: \$9,450							
	Gas: \$7/Mcf		G	Gas: \$7/N		\$7/Mcf	f				
	Operating: 8,000 ho		ours/year	С)pe	erating: 8,000		ours/year			
		Leak Re	eduction	Payback		Γ	Leak Re	eduction	Payback		
		Expected		-			Expe	ected	-		
		(cf/hour)	(m ³ /hour)	(months)			(cf/hour)	(m ³ /hour)	(months)		
		62	1.8	6			425	12	6		
		32	0.9	12			217	6.2	12		
		22	0.6	18			148	4.2	18		
		17	0.5	24			114	3.2	24		


Based on 10% interest rate Mcf = thousand cubic feet;

Industry Experience – Northern Natural Gas

- Monitored emission at two locations
 - Unit A leakage as high as 301 liters/min (640 cf/hour) (18.1 m³/hour)
 - Unit B leakage as high as 105 liters/min (220 cf/hour) (6.2 m³/hour)
- Installed Low Emission Packing (LEP)
 - After 3 months, leak rate shows zero leakage increase

Methane to Markets


Northern Natural Gas - Leakage Rates

 At a packing replacement cost of \$3,000 per compressor rod (parts/labor) and assuming gas at \$7/Mcf, this replacement pays back in <6 months

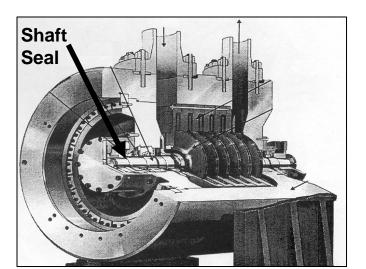
LEP Packing Configuration

LEP: Low Emissions Packing Orientation of P303 Rings Methane to Markets

Methane Savings from Compressors: Agenda

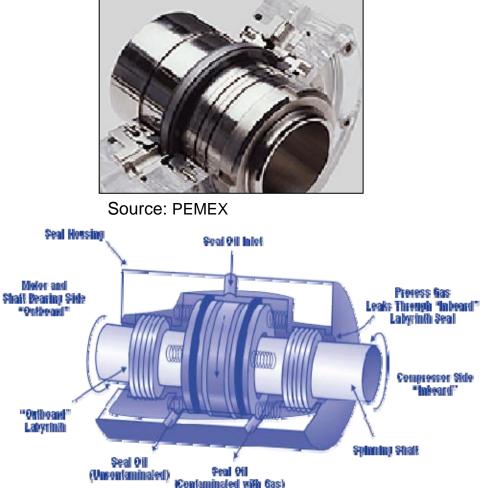
Reciprocating Compressors

• Methane Losses, Methane Savings, Industry Experience

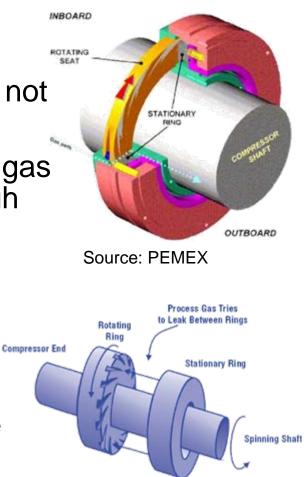

Centrifugal Compressors

- Methane Losses, Methane Savings, Industry Experience
- Discussion

Methane Losses from Centrifugal Compressors

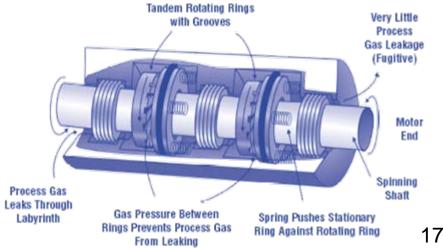

- Centrifugal compressor wet seals leak little gas at the seal face
 - Seal oil degassing may vent 40 to 200 cubic feet per minute (cf/minute) (1.1 to 5.7 m³/minute) to the atmosphere
 - A Natural Gas STAR Partner reported wet seal emissions of 75 Mcf/day (52 cf/minute) (1.5 m³/minute)

Centrifugal Compressor Wet Seals


- High pressure seal oil circulates between rings around the compressor shaft
- Oil absorbs the gas on the inboard side
- Little gas leaks through the oil seal
- Seal oil degassing vents methane to the atmosphere

Natural Gas STAR Partners Reduce Emissions with Dry Seals

- Dry seal springs press the stationary ring in the seal housing against the rotating ring when the compressor is not rotating
- Sealing at high rotation speed pump gas between the seal rings creating a high pressure barrier to leakage
- Only a very small volume of gas escapes through the gap
- Two seals are often used in tandem ····
- Can operate for compressors up to 3,000 pounds per square inch gauge (psig) (205 atm) safely



Methane Savings through Dry Seals

- Dry seals typically leak 0.5 to 3 cf/minute (0.01 to 0.1 m³/minute)
 - Significantly less than the 40 to 200 cf/minute (1.1 to 5.7 m³) emissions from wet seals
- Gas savings translate to approximately \$112,000 to \$651,000 at \$7/Mcf

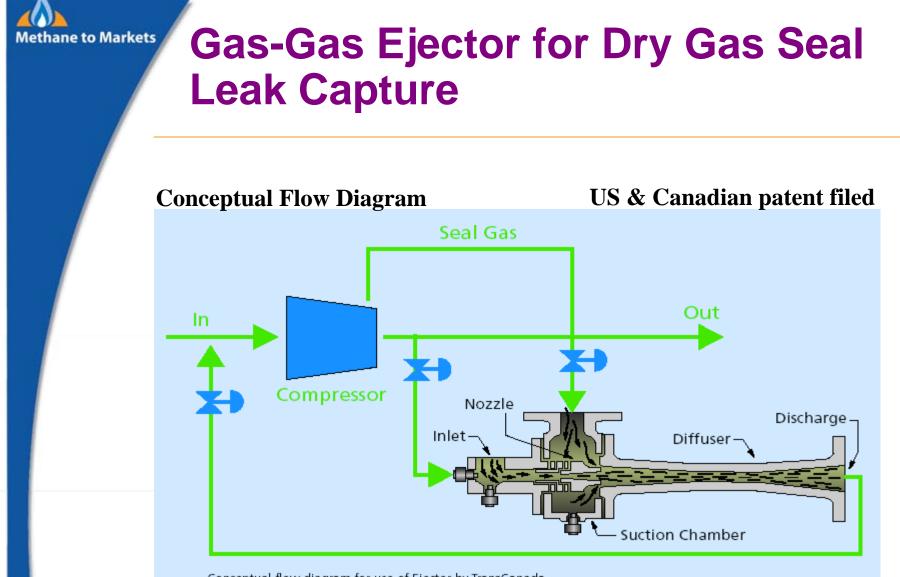
Source: PEMEX

Economics of Replacing Seals

Compare costs and savings for a 6-inch (15.2 cm) shaft beam compressor

Cost Cotorony	Dry Seal	Wet Seal
Cost Category	(\$)	(\$)
Implementation Costs ¹		
Seal costs (2 dry @ \$13,500/shaft-inch, with testing)	\$162,000	
Seal costs (2 wet @ \$6,750/shaft-inch)		\$81,000
Other costs (engineering, equipment installation)	\$162,000	\$0
Total implementation costs	\$324,000	\$81,000
Annual Operating and Maintenance	\$14,100	\$102,400
Annual Methane Emissions (@ \$7/Mcf; 8,000 hours/year)		
2 dry seals at a total of 6 cf/minute (0.2 m ³ /minute)	\$20,160	
2 wet seals at a total of 100 cf/minute (2.8 m ³ /minute)		\$336,000
Total Costs Over 5-Year Period	\$495,300	\$2,273,000
Total Dry Seal Savings Over 5 Years		
Savings	\$1,777,700	
Methane Emissions Reductions (Mcf)	225,600 (6 million m ³)

¹ Flowserve Corporation (updated costs and savings)



Finding More Opportunities

- Partners are identifying other technologies and practices to reduce emissions
 - TransCanada has successfully conducted pilot studies on the use of an ejector to recover dry seal leakage

Source: TransCanada

Conceptual flow diagram for use of Ejector by TransCanada. Ejector: Ludweg, EE, 1980.

Source: TransCanada

Discussion

- Industry experience applying these technologies and practices
- Limitations on application of these technologies and practices
- Actual costs and benefits