



## Science Based Development of a DI&M Program

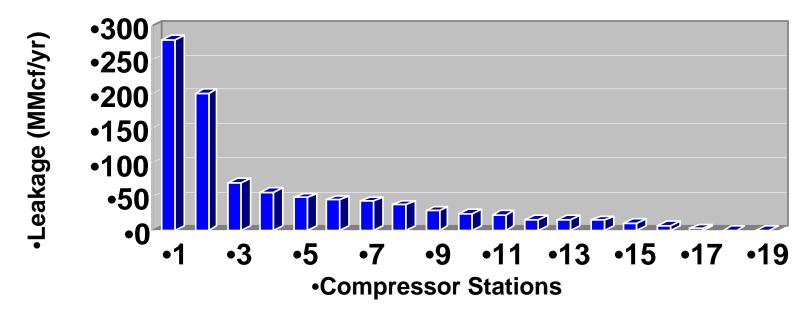


Methane to Markets Partnership Technology Transfer Workshop September 15, 2009 David Picard

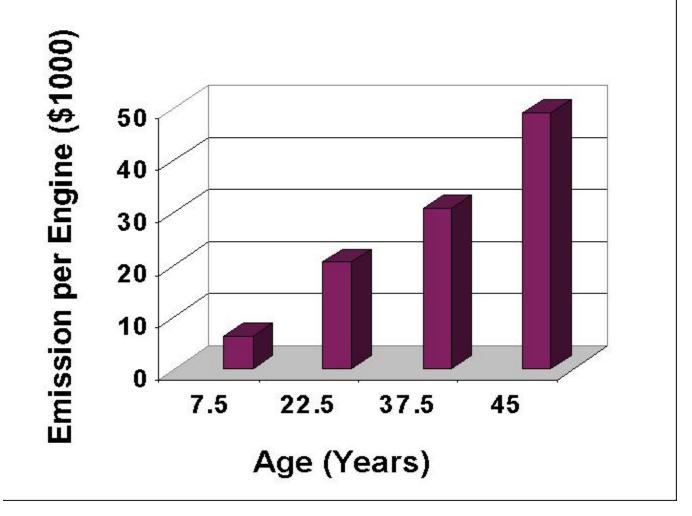
### **Regulatory Context**

- Fugitive emissions management is a regulatory requirement for the upstream oil and natural gas industry in Alberta (ERCB Directive 60):
  - Operators must develop and implement a program to detect and repair leaks.
    - These programs must meet or exceed the CAPP Best Management Practice for Fugitive Emissions Management.
  - Operators must use pressurized tank trucks or trucks with suitable and functional emission controls when transporting sour fluids from upstream petroleum industry facilities.

#### ERCB Response:


- □ Purchased IR camera and has established its own inspection team.
- □ Checks to see that companies are implementing their FEM plans.
- □ Plans to review industry's response to the BMP at the end of 2009.

#### Leak Characteristics


- Contribute significantly to total CH<sub>4</sub> emissions at natural gas facilities.
- Only a few percent of the components actually leak.
- Most of the leakage is usually from just a few big leakers.
- Different types of components have different leak potentials and wear out at different rates.
- Components in sour or odorized service tend to leak less than those in sweet or unodorized service.

#### **Fugitive Emissions**

- Distribution of opportunities is skewed.
- Few sources are responsible for majority of emissions-focus efforts on these sources first.



#### Opportunities are Greatest at Older Facilities: Average Emissions vs Age



#### **Reasons for Big Leaks**

- Flaws, improper installation, damage, and progressive deterioration.
- Severe/demanding applications coupled with high cost or difficulty of repairs.
- Lack of leak checks after maintenance activities.
- Unnoticed leaks because they occur in difficult-toaccess, low-traffic, crowded or noisy areas.
- Lack of measurement data to build a business case.

## Average Leak Trends at 9 Gas Plants and 9 Upstream Compressor Stations

| Facility Type          | Components<br>Surveyed | Leak<br>Frequency<br>(%) | Emissions From All Leaking<br>Sources       |                    |                 | Contribution to<br>THC Emissions |     |
|------------------------|------------------------|--------------------------|---------------------------------------------|--------------------|-----------------|----------------------------------|-----|
|                        |                        |                          | THC<br>(10 <sup>3</sup> m <sup>3</sup> / y) | CH4<br>(tonnes/ y) | Value<br>(\$/y) | (%)                              | (%) |
| Gas Plants             | 16 547                 | 2.5                      | 1 680                                       | 924                | 488 206         | 54                               | 43  |
| Compressor<br>Stations | 2 478                  | 1.5                      | 146                                         | 85                 | 43 992          | 83                               | 64  |

#### What is Normal Practice?

- Perform a leak check (using a bubble test or hand held gas sensor) on equipment components when first installed and after inspection and maintenance.
- Thereafter, leaks are detected by:
  - □ Area or building monitors.
  - Personal monitors.
  - □ Olfactory, audible or visual indicators.
- Leaks are fixed if it is easy to do or they pose a safety concern.
- Unmanned facilities get less attention than manned facilities.
- Priority following a facility turnaround is to get it back online rather than ensure all affected components have been leak checked.

# What is Directed Inspection & Maintenance or DI&M?

- It is a practicable ongoing approach to achieving significant cost-effective reductions in fugitive equipment leaks:
  - □ Find the big leaks in an efficient manner:
    - Focus efforts on the most likely sources of big leaks with coarse or less frequent screening of other components.
  - Only repair components that are cost-effective to repair or pose a safety or environmental concern.
  - Minimize the potential for big leaks and provide early detection and repair of these when they occur.

#### What is DI&M?

- Implement repairs as soon as possible, or at the next facility turnaround if a major shutdown is required.
- Check for leaks after maintenance or adjustment of equipment.
- Consider leakage directly to the atmosphere as well as into vents, flares and blowdown systems.

#### What are the Benefits?

- Practicable, less expensive alternative to LDAR.
- Resource conservation.
- Increased revenue.
- Cost-effective
- Improved system reliability.
  - Reduced downtime.
  - Potentially reduced maintenance costs through early detection of problems.
- Safer work place.
- Improved environmental performance.
- Best-in-Class recognition.

#### Where Should Efforts be Focused?

| Sample Leak Statistics for Gas Transmission Facilities |                         |                   |                                       |                                       |                                              |                               |
|--------------------------------------------------------|-------------------------|-------------------|---------------------------------------|---------------------------------------|----------------------------------------------|-------------------------------|
| Source                                                 | Number<br>of<br>Sources | Leak<br>Frequency | Average<br>Emissions<br>(kg/h/source) | Percent of<br>Component<br>Population | Contribution<br>to Total<br>Emissions<br>(%) | Relative<br>Leak<br>Potential |
| Pressurized Station or<br>Unit Blowdown<br>System      | 219                     | 59.8              | 3.41E+00                              | 0.131                                 | 53.116                                       | 7616                          |
| Compressor Seal –<br>Centrifugal                       | 103                     | 64.1              | 1.27E+00                              | 0.062                                 | 9.310                                        | 2838                          |
| Compressor Seal –<br>Reciprocating                     | 167                     | 40.1              | 1.07E+00                              | 0.100                                 | 12.764                                       | 2400                          |
| Pressure Relief Valve                                  | 612                     | 31.2              | 1.62E-01                              | 0.366                                 | 7.062                                        | 362                           |
| Open-Ended Line                                        | 928                     | 58.1              | 9.18E-02                              | 0.555                                 | 6.070                                        | 205                           |
| Orifice Meter                                          | 185                     | 22.7              | 4.86E-02                              | 0.111                                 | 0.641                                        | 109                           |
| Control Valve                                          | 782                     | 9                 | 1.65E-02                              | 0.468                                 | 0.919                                        | 37                            |
| Pressure Regulator                                     | 816                     | 7                 | 7.95E-03                              | 0.488                                 | 0.462                                        | 18                            |
| Valve                                                  | 17029                   | 2.8               | 4.13E-03                              | 10.190                                | 5.011                                        | 9                             |
| Connector                                              | 145829                  | 0.9               | 4.47E-04                              | 87.264                                | 4.644                                        | 1                             |
| Other Flow Meter                                       | 443                     | 1.8               | 9.94E-06                              | 0.265                                 | 0.000                                        | 0.02                          |

### Suggested Monitoring Frequencies

| Component Specific Suggested Leak Monitoring Frequencies |                                                     |                                  |             |                                                                               |  |  |
|----------------------------------------------------------|-----------------------------------------------------|----------------------------------|-------------|-------------------------------------------------------------------------------|--|--|
| Source<br>Category                                       | Type of Component                                   | Service                          | Application | Frequency                                                                     |  |  |
| Process Equipment                                        | Connectors and<br>Covers                            | All                              |             | Immediately after<br>any adjustments<br>and once every 5<br>years thereafter. |  |  |
|                                                          | Control Valves<br>Block Valves – Rising<br>Stem     | Gas/Vapour/LPG<br>Gas/Vapour/LPG | All         | Annually.<br>Annually.                                                        |  |  |
|                                                          | Block Valves – Quarter<br>Turn                      | Gas/Vapour/LPG                   | All         | Once every 5 years.                                                           |  |  |
|                                                          | Compressor Seals                                    | All                              | All         | Quarterly.                                                                    |  |  |
|                                                          | Pump Seals                                          | All                              | All         | Quarterly.                                                                    |  |  |
|                                                          | Pressure Relief Valves                              | All                              | All         | Annually.                                                                     |  |  |
|                                                          | Open-ended Lines                                    | All                              | All         | Annually.                                                                     |  |  |
|                                                          | Emergency Vent and<br>Blowdown Systems <sup>1</sup> | All                              | All         | Quarterly.                                                                    |  |  |
| Vapour Collection                                        | Tank Hatches                                        | All                              | All         | Quarterly.                                                                    |  |  |
| Systems                                                  | Pressure-Vacuum<br>Safety Valves                    | All                              | All         | Quarterly.                                                                    |  |  |

#### Implementing a DI&M Program

- Establish emissions baseline.
- Target a <2% leak frequency in each component category.</p>
- Establish a facility-specific DI&M plan to include monitoring performance over time.
- Encourage facility personnel to self monitor with particular emphasis on the most likely sources of big leaks.

#### Implementing a DI&M Program

- Achieve optimum balance between manual, instrumented and contracted solutions.
  - □Consider the use of IR cameras and Hi-Flow sampler.
- Prioritize and implement solutions.
- Conduct confirmatory field measurement.
- Achieve real cost-effective emission reductions.
- Document efforts and experiences.

#### Key Elements of a DI&M Program

#### Periodic Comprehensive Leak Surveys.

□Once every 5 years.

- Targeted quarterly and annual monitoring.
  - □Compressor and pump seals.
  - Pressure-vacuum valves on blanketed tanks.
  - □Blowdown systems.
  - □ PRVs, control valves and rising-stem block valves.

### Key Elements of a DI&M Program

Consider permanent instrumented or easy-toaccess monitoring systems.

□ For difficult-to-access sources with high leak potentials.

- Leak checks following maintenance or adjustments.
  - Establish as standard practice and be able to document that this is being done.

### Wrap up

- Questions?
- Additional Information
  - http://www.capp.ca/getdoc.aspx?DocId=116116&DT= PDF
- Thank you
- David Picard, Clearstone Engineering, Ltd
- **403-215-2730**
- dave.picard@clearstone.ca