

On Flaring and Venting Reduction and Natural Gas Utilisation

Advanced Well Completion Technology to Reduce Methane Emissions and Use of Infared Cameras for Leak Detection

Phil Snider Marathon Oil Company

On Flaring and Venting Reduction and Natural Gas Utilisation

How am I going to frac this???

- 2 -

Conventional Industry Solution

a few years ago

- Common stimulation technique
 - "cherry pick" individual zones
 - Perforate and attempt to stimulate multiple intervals
 - -Flow back (venting gas)
 - -Isolate lower intervals
 - –(repeat process multiple times)
 - -Remove all isolation devices and flow well.
- Not very effective
 - -Inevitably bypass much pay
 - -Compromise stimulation design
 - -Time consuming and costly
 - -Infrastructure issues in certain locations

Conventional Well Completion

Casing Conveyed Perforating Completion

Cross-Section of Gun Assembly BAL FORM

Isolation Valve Below External Perforating Gun

- Firing the gun actuates a lower isolation valve.
- Valve actuates when a protective sleeve shifts.
 - Compatible with cementing and fracturing operations
- Frangible; flapper valve removal is usually easy
 - -PAST: with coiled tubing.
 - -NOW: DISAPPEARING
 - Next firing removes the lower isolation valves

Module Placement

On Flaring and Venting Reduction and Natural Gas Utilisation

Technical Achievements Marathon Alaska

- Single Day Completion 24 hour period
 - -16 stages fracture stimulated
 - with well cleanout and isolation valve removal
 - gas to sales within 30 hours

Excape Well Completion

On Flaring and Venting Reduction and Natural Gas Utilisation

Water and Frac Fluid Rate

Unloading Rate

Time (days)

- 11 -

Marathon Alaska Excape Well **Post – Completion Production Data**

As of 0530 7/25/04 4000 3789 3750 3500 3250 3000 2750 2500 Flowrate, MCFD 2250 2000 1750 1500 Place well in Sales 1250 1000 750 630 500 346 250 0 7/22/2004 0:00 7/22/2004 12:00 7/23/2004 0:00 7/23/2004 12:00 7/24/2004 0:00 7/24/2004 12:00 7/25/2004 0:00 7/25/2004 12:00 Date & Time

KBU 23-7 Test Data

GAS RATE WHP -H2O RATE

How Much Gas Was Not Vented? Marathon Alaska Excape Wells

Excape Completion Process Well Name	Location	Depth	Modules Completed (Zones Competed)	IP	Excape: Estimated Venting Before Sales	Total Vent time
KBU 42-7	Alaska	7,500 feet	15 modules	3,150 MCFD	700 MCF	

Conventional: Number of Frac Stages	Conventional: Estimated Venting per day, per Stage	Conventional: Estimated Number of Venting Days Per Stage	Conventional: Total Vented Volume	Reduction in Venting Volume
4	350 MCFD	3. days	4,200 MCF	3,500 MCF

Estimated Gas Not Vented

Modules Run Per Well

On Flaring and Venting Reduction and Natural Gas Utilisation

Modules Run Per Well

- 15 -

Well Depths Well

On Flaring and Venting Reduction and Natural Gas Utilisation

Excape Installations, Well Depth

Mud Weights Encountered

On Flaring and Venting Reduction and Natural Gas Utilisation

Excape Installations, Mud Weights

- 17 -

Well Deviations

On Flaring and Venting Reduction and Natural Gas Utilisation

Maximum Open Hole Deviation

Excape: Technical Operating Efficiencies

	Marathon	Total Industry	Horizontal
Modules Attempted to Install	501 modules	1001 modules	329 modules
Modules Actually Installed	501 modules	984 modules	312 modules
Module Installation Success Statistics	100.0%	98.3%	94.8%
Modules Attempted to Fire	493 modules	946 modules	303 modules
Modules Successfully Fired	491 modules	923 modules	290 modules
Firing Success Statistics	99.6%	97.6%	95.7%
Successful Well Installation Count	44 wells	96 wells	32 wells
		Review Date 10/4/2008	

Recent Marathon Horizontal Well Depth: 17,300 feet (5,300 meters)

On Flaring and Venting Reduction and Natural Gas Utilisation

Cana 1–15H Woodford Shale Well

Conventional Completion Costs	Ş	4,374,500
Excape Completion Costs	\$	3,994,200
Estimated Savings	\$	380,300

*note: extra tin e fordnilling rig during com pletion is included

Safety

Cost Reduction

Excape - Cana 1-15 H Well COMPLETION Phase	Conventional - Cana 1-15H Well COMPLETION Phase
MAN DAYS 205 man days	MAN DAYS 321 man days
Man Hrs. 4,908 man hours	Man Hrs. 7,692 man days
High Risk Man Days 8 man days High risk Man Hours 192 man hours	High Risk Man Days51 man daysHigh risk Man Hours1,224 man hours

Man Hr. Reduction for Completion	2,784 man hours	
Personnel Exposure Reduction	36%	
High risk Man Hr. Reduction for Completion	1,032 man hours	
High Risk Personnel Exposure Reduction	84%	

Believed to be world's first totally intervention-less completion

Conclusion

This Technology is reliable, and has safety and environmental benefits (~50% reduction in man hours, less exposure)

It has led to development of competing multi-zone stimulation techniques, which is beneficial to industry as a whole.

The amount of gas which can avoid being vented is very significant.

ThermaCAM GasFindIR Camera

- The hand-held infrared (IR) camera is a screening tool
- Can detect emissions not visible to the naked eye
- Provides actual images of the gas plume in real-time

ThermaCAM GasFindIR Camera

- Can see natural gas & other volatiles:
 - -Benzene
 - -Butane
 - -Ethane
 - -Ethylbenzene
 - -Ethylene
 - -Heptane
 - -Hexane
 - -Isoprene
 - -MEK
 - -Methane

- -Methanol
- -MIBK
- -Octane
- -Pentane
- -1-Pentane
- -Propane
- -Propylene
- -Toluene
- -Xylene
- Cannot detect H₂S, CO₂, CO, or NO_x
- Cannot differentiate the gas components or quantify the emissions

- Video 1
- Video 2