

On Flaring and Venting Reduction and Natural Gas Utilisation

Synfuels International, **Inc**. Upstream GTL Solutions for Flaring

Edward Peterson, PhD, P.E., Chief Engineer

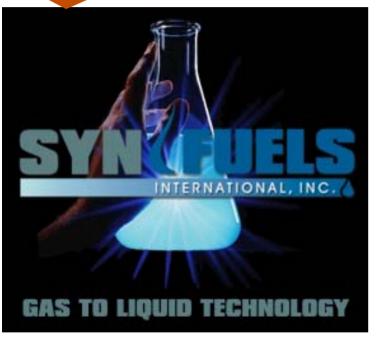
Why Synfuels pursued an economical GTL & GTE process

On Flaring and Venting Reduction and Natural Gas Utilisation

- Government restrictions on flaring
- Global Environmental concerns
- Increasing demand for 'transportable' liquid fuel in emerging economies

- 2 -

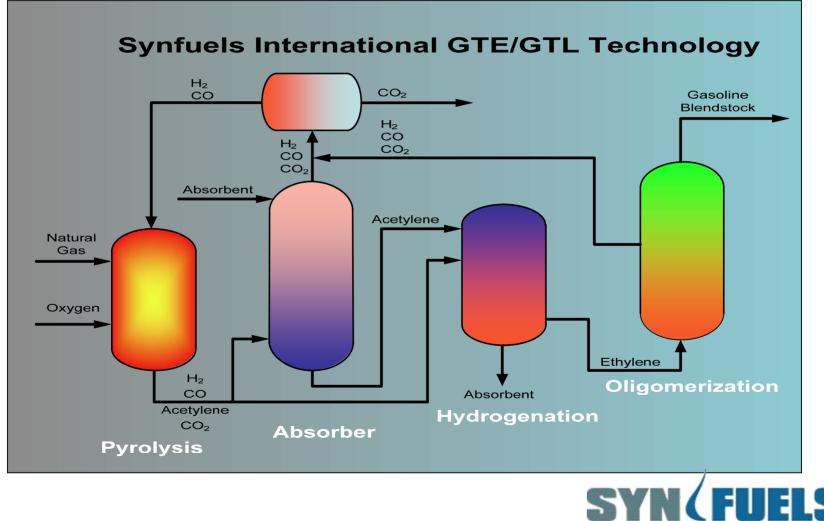
- Laws favouring cleaner fuels
- Need for greater utilization of resources
- Rising energy prices


Fischer-Tropsch (F-T) Limitations

- F-T needs huge plants to create the necessary economies of scale
- F-T's minimum economic size is about 300 MMSCFD
- Primary F-T product has wide molecular weight distribution – lots of waxes and light ends
- Of 15,000+ gas fields outside North America's pipeline network, less than 200 can support mega-scale F-T plants

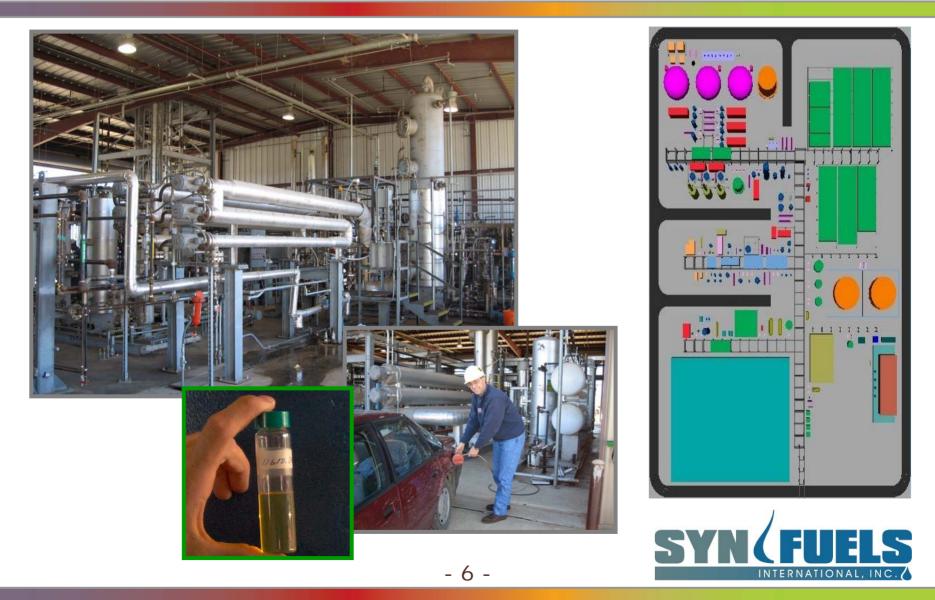
"Smaller fields need smaller plants that require much less capital than Fischer-Tropsch demands."

- Innovative new approach Not a F-T modification
- Lower operating pressure than F-T. Therefore, lower cost and easier fabrication
- Near 0% recycled gas. This reduces operating costs
- Demonstrated effective down to 30 MSCFD
- Most economical between 10 and 250 MMSCFD



On Flaring and Venting Reduction and Natural Gas Utilisation

INTERNATIONAL, INC.



- 5 -

50 MMSCFD Plant Design

On Flaring and Venting Reduction and Natural Gas Utilisation

Clean Gasoline from Methane

On Flaring and Venting Reduction and Natural Gas Utilisation

Synfuels GTL Product Properties

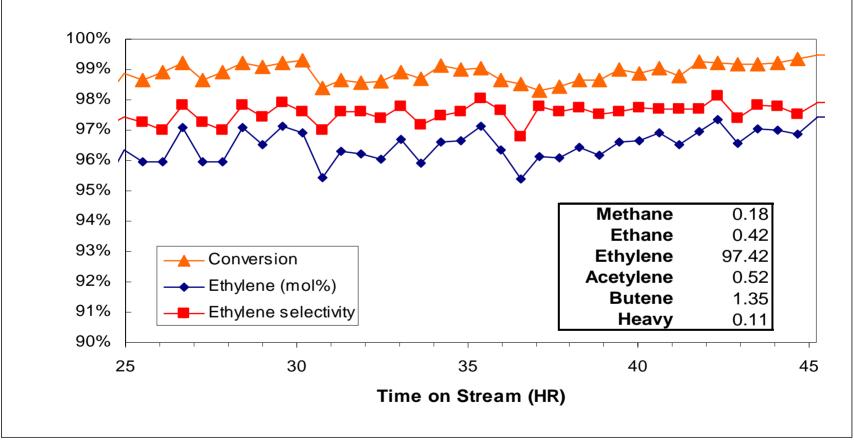
Specific Gravity0.7599 (Water=1)°API Gravity54.71 @ 60°FMolecular Weight100.422Weight6.33 Lbs/GalGross Heating
Value124190 BTU/CF

Synfuels GTL Product Composition

	vol%
Paraffins	12
Iso-paraffins	35.9
Olefins	1
Naphthenes	9.8
Aromatics	38.5

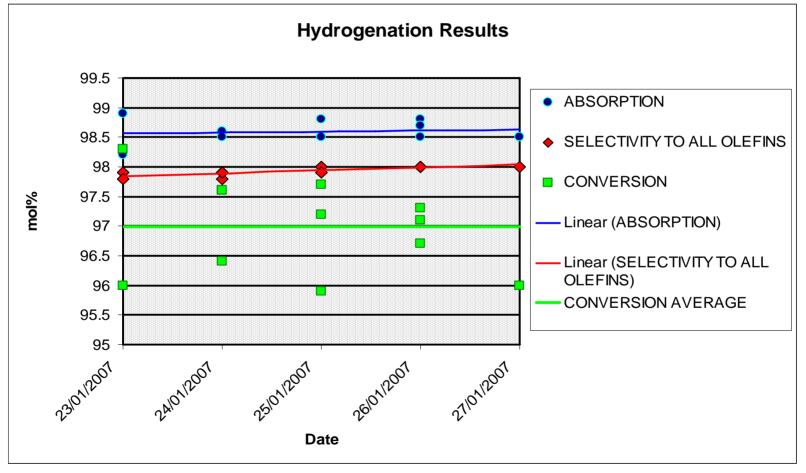
- Must limit acetylene concentration for reaction and temperature control
- High temperature can lead to a "runaway" reaction
- Requires processing large volumes of diluents rich gas
- Tends toward over-conversion to ethane

Synfuels Uses Liquid-Phase Hydrogenation of Acetylene


- On Flaring and Venting Reduction and Natural Gas Utilisation
- Selectively absorbs acetylene
- Rejects unwanted gases
- Greatly reduces volume of processed gas
- Operates at moderate conditions
- No thermal "run-away" reaction
- Much higher acetylene concentrations can be used

Extended Duration Conversion and Selectivity Lab Data

On Flaring and Venting Reduction and Natural Gas Utilisation



Plant Results

On Flaring and Venting Reduction and Natural Gas Utilisation

On Flaring and Venting Reduction and Natural Gas Utilisation

Synfuels Technology is covered by 10 US Patents and dozens of patents pending:

Method for Converting Natural Gas to Liquid Hydrocarbons	Patent Number:6,130,260	
Method for Converting Natural Gas to Liquid Hydrocarbons	Patent Number:6,323,247	
Method for Converting Methane-Containing Gaseous Hydrocarbon Mixtures to Liquid Hydrocarbons		
	Patent Number:6,433,235	
Method for Converting Natural Gas to Liquid Hydrocarbons	Patent Number:6,602,920	
Process for Liquid Phase Hydrogenation	Patent Number:7,045,670	
Method for Converting Natural Gas to Olefins	Patent Number:7,119,240	
Process for Conversion of Natural Gas to Hydrocarbon Liquids	Patent Number:7,183,451	
Process for Conversion of Natural Gas to Ethylene	Patent Number:7,208,647	
High Temperature Hydrocarbon Cracking	Patent Number:7,250,449	
Process for Liquid Phase Hydrogenation	Patent Number:7,408,091	

- 12 -

- A unique, patented natural gas to gasoline or ethylene process
- Established, fully scalable, industrially proven design
- Synfuels liquid-phase hydrogenation is the technology's cornerstone
- Breakthrough technology reduces recycle, compression and system volumes resulting in low capital and operating cost and High IRR
- Flaring problems eliminated with Synfuels Gasto-Gasoline plants erected up-stream, on-site

Synfuels Top Team

On Flaring and Venting Reduction and Natural Gas Utilisation

Synfuels International, Inc.

- Mr. Ben Weber, CEO
- Mr. Thomas Rolfe, President
- Mr. Charles Matar, Managing Director, MENA
- Dr. Ed Peterson, Chief Engineer

Bryan Research and Engineering

Prof. Jerry Bullin, President Dr. Joel Cantrell, Development Engineer

Texas A&M University

Prof. Kenneth Hall, former Head of Chemical Engineering

