Methane to Markets

Transmission Pipeline Opportunities

Advancing Project Development in India through Public Private Partnerships

22 – 23 February, 2007

Pipeline Maintenance and Repair: Agenda

- Methane Losses from Pipeline Maintenance
- Hot Taps
- Composite Wrap
- Pipeline Pumpdowns
- Pipeline Pigging
- Discussion Questions

Methane Losses from Current Pipeline Maintenance Practices

- Natural gas is often vented to the atmosphere when performing pipeline repairs and new connections
 - Up to 56,600 m^{3*} natural gas vented when making a new connection
 - Up to 170,000 m^{3*} natural gas vented when replacing pipe that has non-leaking, external damage
- These practices result in methane emissions
 - Loss of sales
 - Service disruption and customer inconvenience
 - Costs of evacuating the existing piping system

*pipelines ranging from 4 to 18 inches (10 – 46 centimeters) diameter operating at 100 to 1,000 pounds per square inch gauge pressure (7.8 – 69 atmospheres)

Methane Losses from Major Repairs

- Not always possible to repair a pipeline without taking it out of service
- Major pipeline repairs often involve closing off the repair area and venting gas to the atmosphere
 - Major repairs
 - Internal corrosion
 - Leak repairs
 - Installing large connections
- 850 to 170,000 m^{3*} natural gas vented to the atmosphere with each repair

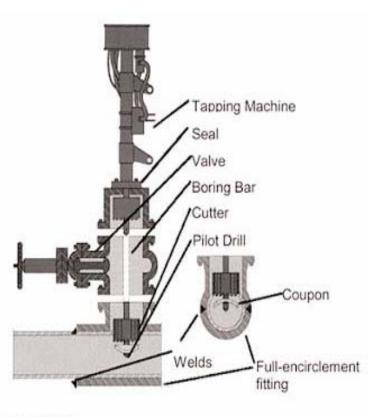
*pipelines ranging from 4 to 18 inches (10 – 46 cm) diameter operating at 100 to 1,000 pounds per square inch gauge pressure (7.8 – 69 atm) Methane to Markets

Pipeline Maintenance and Repair: Agenda

- Methane Losses from Pipeline Maintenance
- Hot Taps
- Composite Wrap
- Pipeline Pumpdowns
- Pipeline Pigging
- Discussion Questions

Hot Taps for New Connections

 Connecting pipelines without service disruption or methane emissions


Certified Williamson Industries Technician performing a hot tap with a 760 Tapping Machine as part of a 12" Stopple application.

Source: Williamson Industries Inc.

Hot Tapping Procedure

- Connect branch fitting and permanent valve on the existing pipeline while in service
- Install hot tapping machine on the valve
- Cut through pipeline wall and extract coupon through the valve
- Close valve and remove hot tapping machine
- Connect branch line

Source: IPSCO

Schematic of Hot Tapping Machine

Hot Tap Benefits

- Continuous system operation shutdown and service interruptions are avoided
- No gas released to the atmosphere
- Avoided cutting, realignment and re-welding of pipeline sections
- Avoid inerting / gas freeing pipeline section for hot work
- Reduced planning and coordination costs
- Increased worker safety

Project Summary for India

Using hot taps for in-service pipeline connections

Project Description: Using hot taps for 320 in-service pipeline connections (305 small taps and 15 large taps)

Methane Saved:	691,000 cubic meters per year (24,400 Mcf per year)
Sales Value ¹ :	\$73,200
Capital and Installation Cost ² :	(\$57,800)
Operating and Maintenance Cost ³ :	(\$1,800) per year
Payback Period:	10 months

1 – Gas price in India \$3/Mcf (\$106/thousand m³)

2 – All costs have been converted to an Indian basis using the methodology described in US Natural Gas STAR program success points to global opportunities to cut methane emissions cost-effectively, Oil and Gas Journal, July 12, 2004

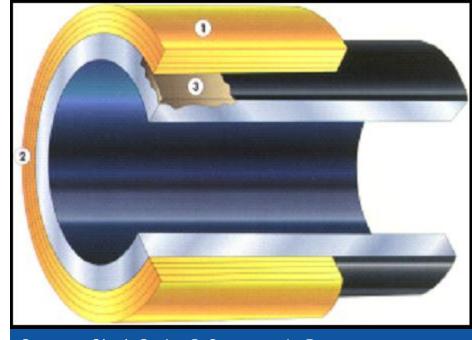
3 – O&M Cost for purchased small hot tap equipment and contract service cost for larger taps.

Pipeline Maintenance and Repair: Agenda

- Methane Losses from Pipeline Maintenance
- Hot Taps
- Composite Wrap
- Pipeline Pumpdowns
- Pipeline Pigging
- Discussion Questions

Composite Wrap for External Repair

Permanent On-Line Pipeline Repair Technology



Source: Duke Energy

Composite Wrap: What Are They?

- 1) A high-strength glass fiber composite or laminate
- 2) An adhesive or resin bonding system
- 3) A highcompressivestrength load
 transfer filler
 compound

Source: Clock Spring[®] Company L. P.

Composite Wrap Installation

- After excavation and pipe preparation
 - External defects filled with filler
 - Composite wrap wound around pipe with adhesive or laminating agents
 - Typically 5 centimeters (2 inches) of wrap must extend beyond damage
 - Excavation site refilled after curing time
- Reducing pressure improves quality of repair

Source: Armor Plate

Composite Wrap Lessons Learned

- Trained but not skilled crafts persons required
- Specialized welding and lifting equipment not required
- Minimizes access concerns
- No delays awaiting metal sleeve
- Cathodic protection remains functional

- Proven permanent repair for external defects
- Temporary repair for internal faults
- In-service pipeline repair methodology
- Ideal for urgent and quick repair
- Avoid service disruptions
- Cost-effective

Methane to Markets

Clock Spring® Columbia Experience

- Clock Spring[®] was tested on a 61 centimeter (24 inch) diameter pipeline affected by external damage
- Pipeline had 75% diameter deflection and a defect length of 1.83 meters (6 feet)
- Clock Spring® used 87 ten centimeter (four inch) wide wrap kits and 150 filler kits to repair the damage
- Clocks Spring® wrap passed pressure cycles lasting 15 minutes at pressures up to 1800 pounds per square inch gauge (psig)*
 - * 1800 psig = 123 atm

Project Summary for India

Composite wrap for repair of non-leaking pipeline defects

Project Description: Using composite wrap to repair a 15 centimeter (6 inch) pipeline defect

Methane Saved:	105,000 cubic meters per year (3,690 Mcf per year)
Sales Value ¹ :	\$11,100
Capital and Installation Cost ² :	(\$5,800)
Operating and Maintenance Cost ² :	(\$0) per year
Payback Period:	6 months

1 – Gas price in India \$3/Mcf (\$106/thousand m³)

2 – All costs have been converted to an Indian basis using the methodology described in US Natural Gas STAR program success points to global opportunities to cut methane emissions cost-effectively, Oil and Gas Journal, July 12, 2004

Methane to Markets

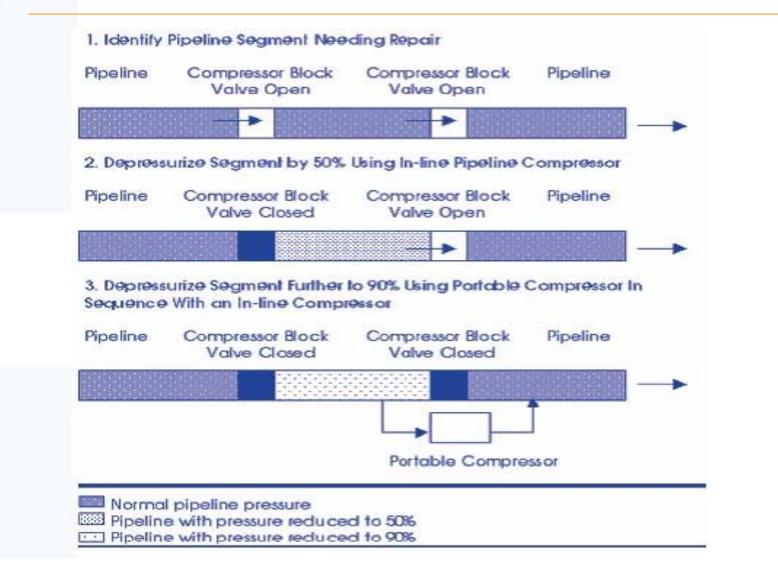
Pipeline Maintenance and Repair: Agenda

- Methane Losses from Pipeline Maintenance
- Hot Taps
- Composite Wrap
- Pipeline Pumpdowns
- Pipeline Pigging
- Discussion Questions

Pipeline Pumpdown

 Minimizing emissions when you must cut out a section of pipeline

Source: Duke Energy



Methane Recovery by Pipeline Pumpdown

- Use in-line compressors to "pull down" the pressure to minimum suction pressure
- Use portable compressor to "pull down" pressure even further
- Cost is justified by immediate payback in gas savings
- About 90% of gas usually vented is recoverable

Methane to Markets

Sequence of Depressurization Events

Pipeline Pumpdown Equipment

- In-line pipeline compressor
 - Typically has compression ratio of 2 to 1
 - Blocking upstream valve reduces pipeline pressure to safe limits for maintenance
- Portable compressor
 - Typically has compression ratio of 5 to 1
 - Can be used in conjunction with in-line compressor to further reduce pressure in the pipeline section
 - Justifiable only when multiple sections of pipeline are to be serviced (i.e. long sections of maintenance or pipeline valve station maintenance where stopples are not feasible)

Economics of Pipeline Pumpdown

- Calculate gas vented to atmosphere by depressuring pipeline
- Calculate gas saved with in-line compressors
- Calculate gas saved with portable compressor
 - Consider cost of a portable compressor
 - O&M costs of a portable compressor
 - Consider fuel costs for operating portable compressor
- Calculate the difference in gas savings

Project Summary for India

 Using pipeline pump-down techniques to lower gas line pressure before maintenance

Project Description: Performing a pump-down four times per month on a 76 cm (30 inch) pipeline at 600 psig with a portable compressor

Methane Saved:	7,500,000 cubic meters per year	
	(265,000 Mcf per year)	
Sales Value ¹ :	\$795,000	
Fuel Cost ² :	(\$9,900) per year	
Lease and Maintenance Cost ³ :	(\$454,000) per year	
Payback Period:	7 months	

1 – Gas price in India \$3/Mcf (\$106/thousand m³)

2 – Fuel cost is based on consuming 1,950 m³ (69 Mcf) of gas per application at \$3/Mcf (\$106/thousand m³)

3 – All costs have been converted to an Indian basis using the methodology described in US Natural Gas STAR program success points to global opportunities to cut methane emissions cost-effectively, Oil and Gas Journal, July 12, 2004

Methane to Markets

Pipeline Maintenance and Repair: Agenda

- Methane Losses from Pipeline Maintenance
- Hot Taps
- Composite Wrap
- Pipeline Pumpdowns
- Pipeline Pigging
- Discussion Questions

Methane Losses from Pipeline Pigging

- Gas lost when launching and receiving a pig
- Fugitive emissions from pig launcher/receiver valves
- Gas lost from storage tanks receiving condensate removed by pigging
- Gas vented from pipeline blowdowns

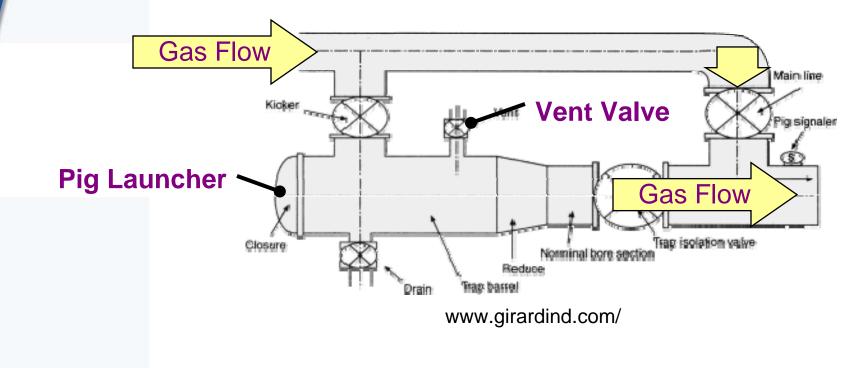
Pigging Pipelines

- Hydrocarbons and water condense inside pipelines, causing pressure drop and reducing gas flow
- Periodic line pigging removes liquids and debris to improve gas flow
 - Also inspect pipeline integrity
- Efficient pigging:
 - Keeps pipeline running continuously
 - Keeps pipeline near maximum throughput by removing debris
 - Minimizes product losses during launch/capture

www.girardind.com/

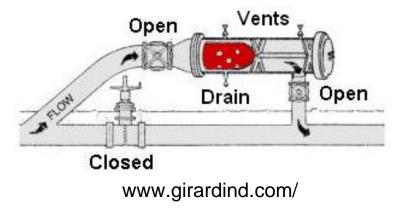
Pigging Applications

- Pipeline pigs come in a variety of shapes and sizes for different applications
 - Cleaning pigs
 - Have brushes or blades to help remove debris
 - Sealing pigs
 - Make tight seal for removing liquids from the pipe
 - Inspection pigs
 - Specialized pigs outfitted with instruments to monitor the pipeline integrity



www.westernfilterco.com

How Does Pigging Vent Methane?


- Pig launchers have isolation valves for loading pigs, pressurizing pigs, and launching pigs with gas bypassed from the pipeline
- Launcher pressuring/depressuring loses methane out the vent valve

Pigging Vents Methane Twice!

- Methane lost through vent valve on the launcher and again through vent valve on the receiver
 - Once receiver is isolated from the line, it must be depressured to remove the pig
 - Liquids ahead of the pig drain to a vessel or tank
- Isolation valve leaks may cause excessive venting to depressure

Estimating Pigging Vents

E = P * V / 14.7 * n * f

where:

- E = methane emissions (m^3)
- P = Gathering line pressure (psia)
- V = Launcher and receiver volume (m^3)
- n = % methane
- f = number of piggings
- Pig trap isolation valve leakage greatly increases this minimum amount of gas venting

psia = pounds per square inch absolute

Estimating Emissions from Pigging

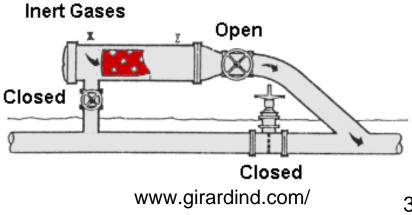
Estimating V

Line Diameter		Methane Emissions Volume	
(inches)	(cm)	(cf)	(m³)
6	15	0.9	0.025
12	30	4.6	0.130
18	46	11.5	0.326
26	66	27.7	0.784
34	86	65.2	1.846
48	122	170.7	4.834

Adapted from www.pigsunlimited.com

- Estimating P
 - Default: 315 psia*
 - * 315 psia = 21.4 atm

- Estimating n
 - Default: 78.8 % methane


Methane Recovery: Use Inert Gases

- Pipeline maintenance requires pipe section blowdown before work can begin
- Gas in pipeline is usually vented to the atmosphere
- Inert gas can be used to drive a pig down the section of pipe to be serviced, displacing the natural gas to a product line rather than venting
- Inert gas is then blown down to the atmosphere, avoiding methane loss

Inert Gas Setup

- Existing pig launcher can be used, set up to work with inert gases
- Portable nitrogen supply connected to the pig launcher vent
- Close valve on the main pipeline, pressurize launcher with inert gas, open launcher to main pipeline
- Supply nitrogen until pig reaches receiver

Industry Experience

- One partner reported using inert gas to purge six pipelines for maintenance
- Gas savings from these applications was 15,200 m³ (538 Mcf)
- These savings correspond to a typical application of:
 - 3.2 kilometers (2 miles) of 25 centimeters (10 inch) diameter pipeline

Is Recovery Profitable?

- No capital costs with existing pigging facilities
- Labor costs are estimated at eight hours for two operators
- Increased safety is the primary benefit of this project
- Gas savings are a secondary benefit, as the labor and nitrogen costs outweigh the gas value

Project Summary for India

Using inert gases and pigs to perform pipeline purges

Project Description: Purging 3.2 kilometers (2 miles) of 25 centimeters (10 inch) diameter pipeline using nitrogen from a nitrogen rejection unit (NRU)

Methane Saved:	2,500 cubic meters per year (90 Mcf per year)	
Sales Value ¹ :	\$270	
Capital and Installation Cost ² :	(\$0)	
Operating and Maintenance Cost ² :	(\$16) per year	
Payback Period:	1 month	

1 – Gas price in India \$3/Mcf (\$106/thousand m³)

2 – All costs have been converted to an Indian basis using the methodology described in US Natural Gas STAR program success points to global opportunities to cut methane emissions cost-effectively, Oil and Gas Journal, July 12, 2004

Discussion Questions

- To what extent are you implementing these practices?
- How could these practices be improved upon or altered for use in your operation(s)?
- What are the barriers (technological, economic, lack of information, regulatory, focus, manpower, etc.) that are preventing you from implementing these practices?