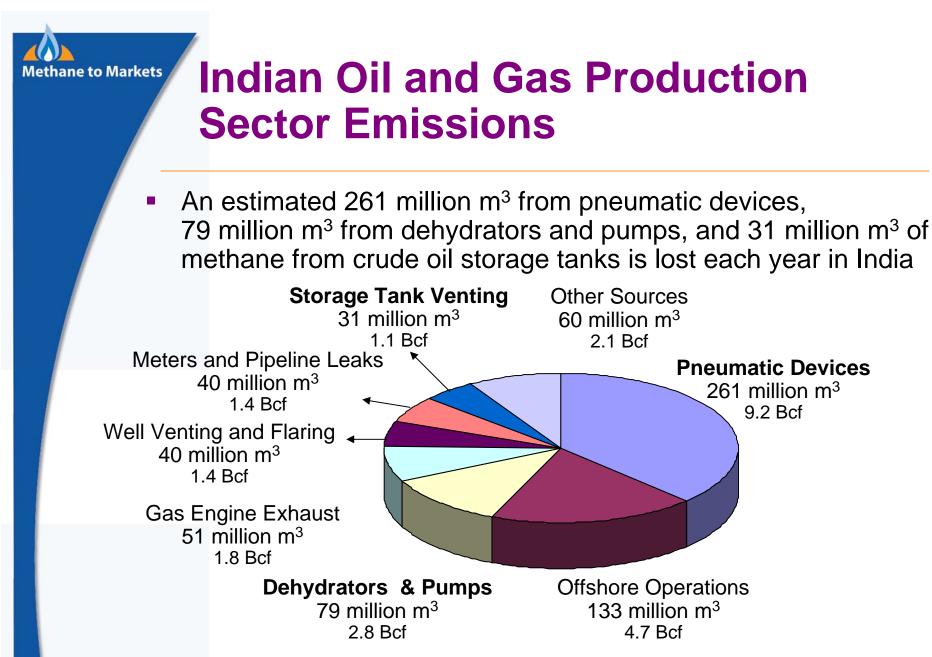
Methane to Markets

Production Sector Emission Reduction Opportunities


Advancing Project Development in India through Public Private Partnerships

22 – 23 February, 2007

Production Sector Emission Reduction Opportunities: Agenda

- Indian Oil and Gas Production Sector Emissions
- Vapor Recovery Units (VRUs)
- Pneumatic Devices
- Dehydrators
- Discussion Questions

Sources: US Natural Gas STAR program success points to global opportunities to cut methane emissions cost-effectively, Oil and Gas Journal, July 12, 2004 Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2004

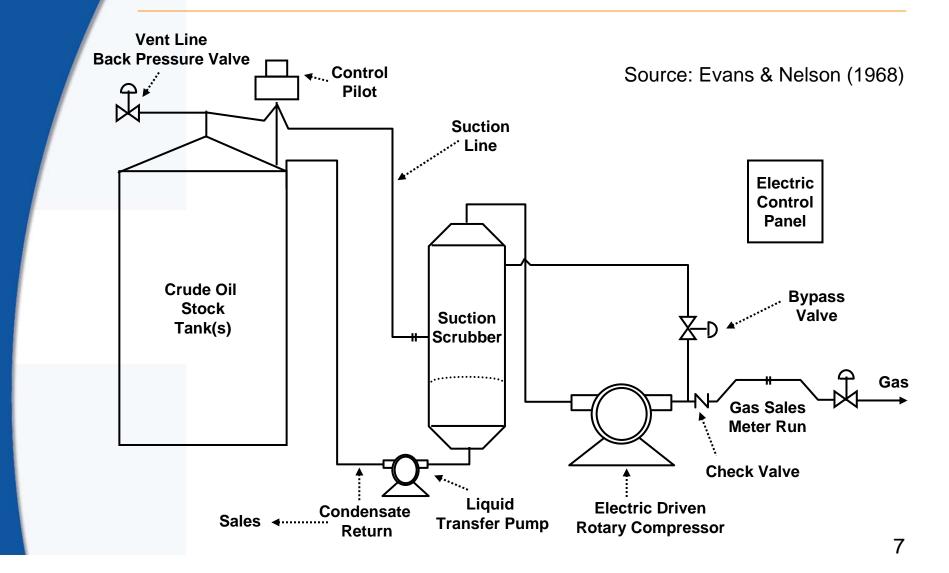
Vapor Recovery Units (VRUs)

Agenda

- Methane Losses
- Methane Recovery
- Lessons Learned

Methane Losses from Storage Tanks

- A production storage tank battery can vent 140 to 2,720 thousand m³ (4,900 – 96,000 Mcf) of natural gas and light hydrocarbon vapors to the atmosphere each year
 - Vapor losses are primarily a function of oil throughput, gravity, and gas-oil separator pressure
- Flash losses
 - Occur when crude is transferred from a gas-oil separator at higher pressure to a storage tank at atmospheric pressure
- Working losses
 - Occur when crude levels change and when crude in tank is agitated
- Standing losses
 - Occur with daily and seasonal temperature and barometric pressure changes



Methane Savings: Vapor Recovery

- Vapor recovery can capture up to 95% of hydrocarbon vapors from tanks
- Recovered vapors have higher heat content than pipeline quality natural gas
- Recovered vapors are more valuable than natural gas and have multiple uses
 - Re-inject into sales pipeline
 - Use as on-site fuel
 - Send to processing plants for recovering valuable natural gas liquids

Conventional Vapor Recovery Unit

Vapor Recovery Installations

Methane to Markets

Criteria for Vapor Recovery Unit Locations

- Steady source and sufficient quantity of losses
 - Crude oil stock tank
 - Flash tank, heater/treater, water skimmer vents
 - Gas pneumatic controllers and pumps
- Outlet for recovered gas
 - Access to low pressure
 gas pipeline,
 compressor suction,
 or on-site fuel system

Dual VRU bound for Venezuela - one of 17 units capturing gas currently for Petroleos de Venezuela. Flooded screw compressor for volumes to 5.0 million cubic feet per day; up to 200 pounds per square inch, gauge (psig).

Quantify Volume of Losses

- Estimate losses from chart based on oil characteristics, pressure, and temperature at each location (± 50%)
- Estimate emissions using the E&P Tank Model (± 20%)
- Engineering equations Vasquez-Beggs (± 20%)
- Measure losses using recording manometer and well tester or ultrasonic meter over several cycles (± 5%)
 - This is the best approach for facility design

PDVSA has installed vapor recovery in the majority of their production facilities in Eastern Venezuela.

Final Stage of Separation

 Atmospheric tanks may emit large amounts of tank vapors at relatively low separator pressure

Vasquez-Beggs Equation

$$GOR = A \times (G_{flash gas}) \times (P_{sep} + 14.7)^{B} \times exp\left(\frac{C \times G_{oil}}{T_{sep} + 460}\right)$$

where,

GOR	=	Ratio of flash gas production to standard stock tank barrels of oil
		produced, in scf/bbl oil (barrels of oil corrected to 60°F)
G _{flash gas}	=	Specific gravity of the tank flash gas, where air = 1. A suggested
-		default value for Gflash gas is 1.22 (TNRCC; Vasquez, 1980)
Goil	=	API gravity of stock tank oil at 60°F
\mathbf{P}_{sep}	=	Pressure in separator, in psig
Tsep	=	Temperature in separator, °F

<u>For $G_{oil} \le 30^{\circ}API$ </u>: A = 0.0362; B = 1.0937; and C = 25.724

For Goil > 30°API: A = 0.0178; B = 1.187; and C = 23.931

Example for Bombay Crude

- G_{oil} 39.2° API
- G_{flash gas} 1.22
- T_{sep} 38° C (100°F)
- P_{sep} 1.2 atm (3 psig)
- GOR = 1 m³/tonne = 3.5 scf/bbl

psig – pounds per square inch, gauge scf – standard cubic feet bbl – barrels 11

Is Recovery Profitable?

 Economics of installing vapor recovery units are attractive, particularly for larger units

Financial Analysis for a conventional VRU project ¹							
Capacity		Installation & Capital Costs ²	Operating & Maintenance	Value of Gas ³	Payback	Internal Rate of Return	
(m ³ /day)	(Mcf/day)	(\$)	(\$/Year)	(\$/Year)	(Months)	(%)	
700	25	35,738	7,367	30,300	19	58	
1,400	50	46,073,	8,419	60,600	11	111	
2,800	100	55,524	10,103	121,360	6	200	
5,600	200	74,425	11,787	242,725	4	310	
14,100	500	103,959	16,839	606,810	3	567	

1 - All costs and revenues are represented in U.S. economics

2 - Unit Cost plus estimated installation at 75% of unit cost

3 - \$7 x 1/2 capacity x 365 x 95%

Project Summary for India

Install Vapor Recovery on Crude Oil Storage Tanks

Project Description: 2,800 m³ per day (100 Mcf/day) of vapor recovery capacity installed on a crude oil stock tank battery.

Gas Saved:	491,000 cubic meters per year (17,300 Mcf per year)	
Sales Value ¹ :	\$51,900	
Capital and Installation Cost ² :	(\$67,700)	
Operating and Maintenance Cost ² :	(\$400) per year	
Payback Period:	16 months	

1 – Gas price in India \$3/Mcf (\$106/thousand m³)

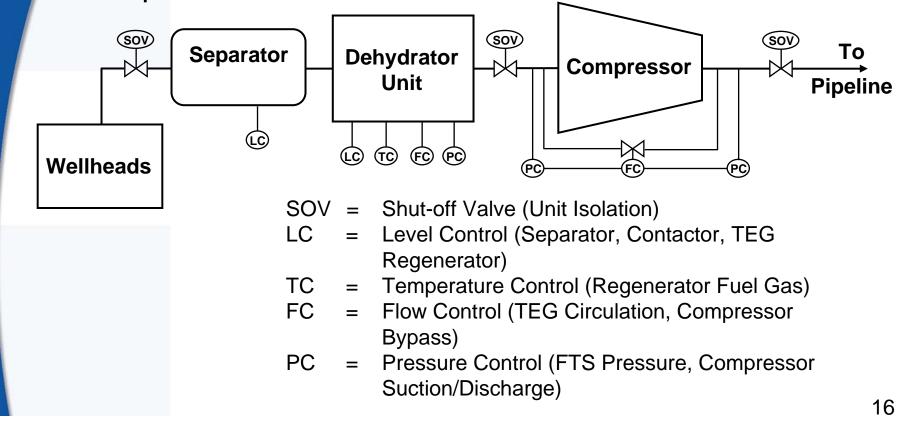
2 – All costs have been converted to an Indian basis using the methodology described in US Natural Gas STAR program success points to global opportunities to cut methane emissions cost-effectively, Oil and Gas Journal, July 12, 2004

Lessons Learned

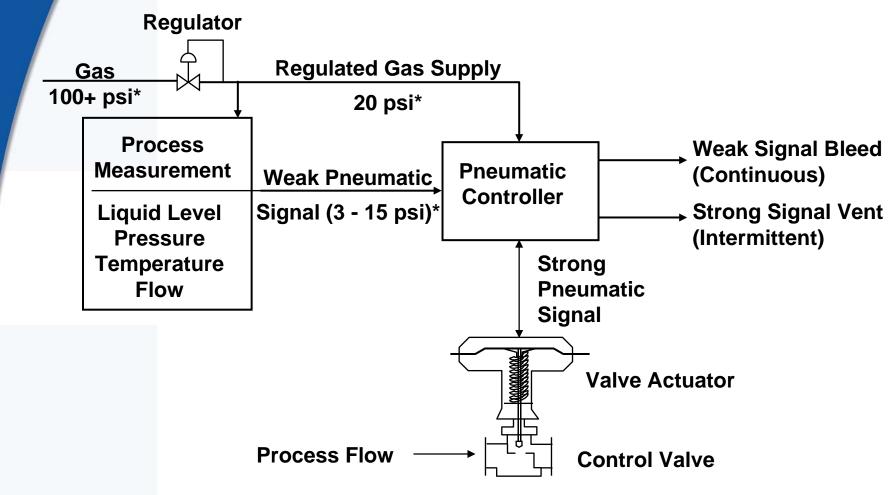
- Vapor recovery can yield generous returns when there are market outlets for recovered gas
 - Recovered high heat content gas has extra value
 - Vapor recovery technology can be highly cost-effective in most general applications
 - Venturi jet models work well in certain niche applications, with reduced operating and maintenance costs
- VRU should be sized for maximum volume expected from storage tanks (rule-of-thumb is to double daily average volume)

Pneumatic Devices

Agenda


- Methane Losses
- Methane Recovery
- Lessons Learned
- Recommendations

Methane to Markets

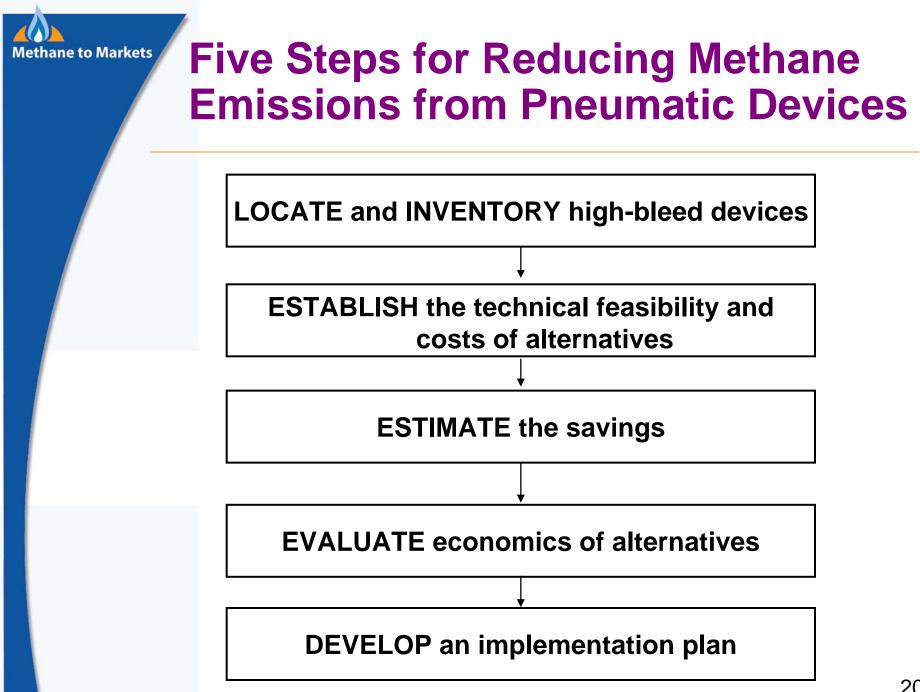

Methane Losses from Pneumatic Devices

 Pneumatic devices account for an estimated 37% of methane emissions in the Indian oil and gas production sector

How Gas Pneumatic Devices Work

* 14.7 pounds per square inch (psi) = 1 atmosphere

Methane Emissions


- As part of normal operations, pneumatic devices release natural gas to atmosphere
- High-bleed devices bleed in excess of 4 m³ per day (6 cf/hour)
 - Equates to >1,460 m³/year (>50 Mcf/year)
 - Typical high-bleed pneumatic devices bleed an average of 3,965 m³/year (140 Mcf/year)
- Actual bleed rate is largely dependent on device's design

Methane to Markets

Methane Recovery from Pneumatic Devices

- Option 1: Replace high-bleed devices with low-bleed devices
 - Replace at end of device's economic life
 - Typical cost range from \$700 to \$3000* per device
- Option 2: Retrofit controller with bleed reduction kits
 - Retrofit kit costs ~ \$675*
 - Payback time ~ 6 months
- Option 3: Maintenance aimed at reducing losses
 - Field survey of controllers
 - Re-evaluate the need for pneumatic positioners
 - Cost is low

Field experience shows that up to 80% of all high-bleed devices can be replaced or retrofitted with low-bleed equipment

Methane to Markets

Suggested Analysis for Replacement

- Replacing high-bleed controllers at end of economic life
 - Determine incremental cost of low-bleed device over high-bleed equivalent
 - Determine gas saved with low-bleed device using manufacturer specifications
 - Compare savings and cost
- Early replacement of high-bleed controllers

—	Compare gas savings of low-bleed device with full cost of replacement
---	---

Implementation	Replace at End	Early Replacements		
Implementation ^a	of Life	Level Control	Pressure Control	
Cost (\$)	$150 - 250^{b}$	513	1,809	
Annual Gas Savings (m ³)	1,400 - 5,660	4,700	6,460	
Annual Gas Savings (Mcf)	50 - 200	166	228	
Annual Value of Saved Gas (\$) ^c	350 - 1,400	1,165	1,596	
IRR (%)	138 – 933	226	84	
Payback (months)	2-9	6	14	

^a All data based on Partners' experiences and represented in U.S. economics

^b Range of incremental costs of low-bleed over high bleed equipment

^c Gas price is assumed to be \$7/Mcf (\$250/thousand m³)

Suggested Analysis for Retrofit

- Retrofit of low-bleed kit
 - Compare savings of low-bleed device with cost of conversion kit
 - Retrofitting reduces emissions by average of 90%

	Retrofit ^a
Implementation Costs ^b	\$675
Bleed rate reduction (m ³ /device/year)	6,200
Bleed rate reduction (Mcf/device/year)	219
Value of gas saved (\$/year) c	1533
Payback (months)	6
Internal Rate of Return	226%

^a On high-bleed controllers

^b All data based on Partners' experiences and represented in U.S. economics.

^c Gas price is assumed to be \$7/Mcf (\$250/thousand m³)

Methane to Markets

Suggested Analysis for Maintenance

- For maintenance aimed at reducing gas losses
 - Measure gas loss before and after procedure
 - Compare savings with labor (and parts) required for activity

	Reduce supply pressure	Repair & retune	Change settings	Remove valve positioners
Implementation Cost (\$) ^a	207	31	0	0
Gas savings (m ³ /year)	4,960	1,250	2,500	4,470
Gas savings (Mcf/year)	175	44	88	158
Value of gas saved (\$/year) ^b	1,225	308	616	1,106
Payback (months)	3	2	<1	<1
IRR	592%	994%		

^a All data based on Partners' experiences and represented in U.S. economics

^b Gas price is assumed to be \$7/Mcf (\$250/thousand m³)

Project Summary for India

Replacing high bleed pneumatics with low bleed

Project Description: Early replacement of a high bleed pressure controller with a low bleed controller

Gas Saved:	7,400 cubic meters per year (260 Mcf per year)
Sales Value ¹ :	\$780
Capital and Installation Cost ² :	(\$2,200)
Operating and Maintenance Cost ² :	(\$0) per year
Payback Period:	3 years

1 – Gas price in India \$3/Mcf (\$106/thousand m³)

2 – All costs have been converted to an Indian basis using the methodology described in US Natural Gas STAR program success points to global opportunities to cut methane emissions cost-effectively, Oil and Gas Journal, July 12, 2004

Lessons Learned

- Most high-bleed pneumatics can be replaced with lower bleed models
- Replacement options save the most gas and are often economic
- Retrofit kits are available and can be highly cost-effective
- Maintenance is a low-cost way of reducing methane emissions

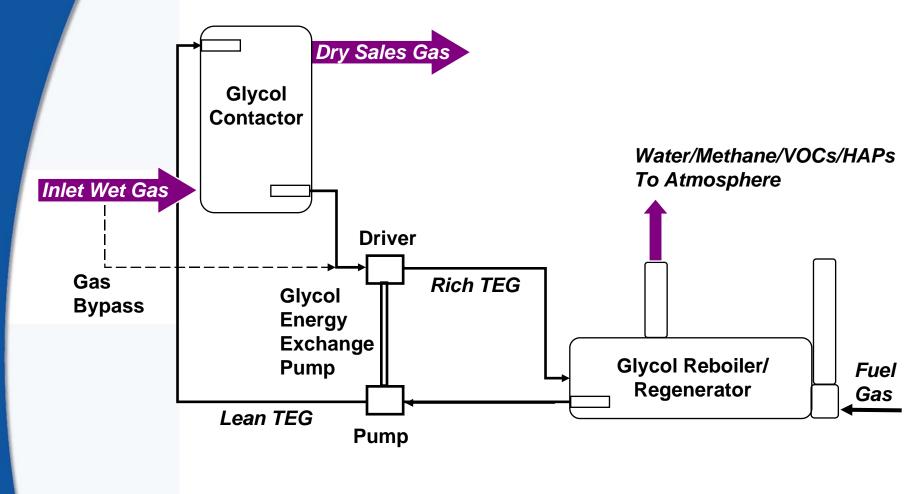
Recommendations

- Evaluate all pneumatics to identify candidates for replacement and retrofit
- Choose lower bleed models in new facilities where feasible
- Identify candidates for early replacement and retrofits by doing economic analysis
- Improve maintenance
- Develop an implementation plan

Minimizing Emissions from Dehydrators

Agenda

- Methane Losses
- Methane Recovery
- Recovery Options and Benefits



Methane Losses from Dehydrators

- Triethylene Glycol (TEG) is the common technology for removing moisture from produced natural gas
- Glycol also absorbs methane, reactive hydrocarbons (VOCs) and aromatics (HAPs)
- Glycol reboilers vent absorbed water, methane, VOCs, HAPs to the atmosphere
 - Wastes gas, costs money, reduces air quality
- On average in the U.S., 17,000 m³ (600 Mcf) methane per glycol dehydrator is emitted each year from ~36,000 dehydrators

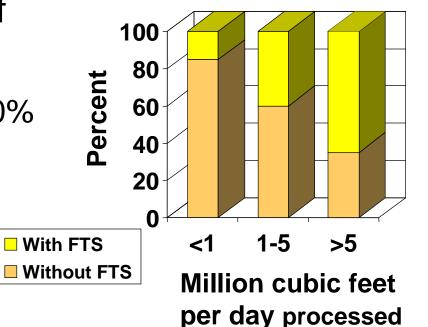
Basic Glycol Dehydrator System Methane to Markets Process Diagram

Methane Recovery Options and Benefits

- Optimize glycol circulation rates
 - Methane emissions are directly proportional to glycol circulation rate
- Install flash tank separator (FTS)
 - Recovers all methane bypassed and most methane absorbed by glycol
- Install electric pump
 - Eliminates need to bypass gas for motive force; eliminates lean glycol contamination by rich glycol

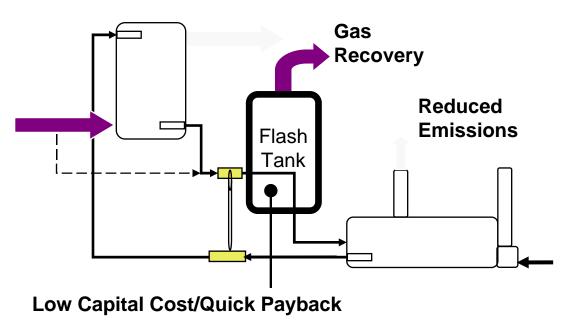
Optimize Glycol Circulation Rate

- Gas well's initial production rate decreases over its lifespan
 - Glycol circulation rates designed for initial, highest production rate
- Glycol overcirculation results in more methane emissions without significant reduction in gas moisture content
 - Natural Gas STAR partners found circulation rates two to three times higher than necessary
 - This means two or three times more methane emissions than necessary


Overall Benefits

- Methane gas savings
- Reduced emissions of VOCs and HAPs
- Lower operating costs
 - Reduced glycol replacement costs
 - Reduced fuel costs
- Immediate payback
- No capital costs

Install Flash Tank Separator (FTS)


- Most dehydrators send glycol/gas mixture from the pump driver to regenerator
- Flash tank separator operating at fuel gas system or compressor suction pressure recovers ~ 90% of methane
 - Recovers 10 to 40%of VOCs
- Many smaller units in U.S. are not using a FTS

Overall Benefits

- Gas recovery
- Reduced methane and VOC emissions
- Low capital cost; low operating costs

Install Electric Pump

- Gas-assist pumps require additional wet production gas for mechanical advantage
 - Removes gas from the production stream
 - Largest contributor to emissions
- Gas-assist pumps leak and contaminate lean glycol with rich glycol
- Electric pump installation eliminates motive gas and lean glycol contamination
 - Economic alternative to flash tank separator
 - Requires electrical power

Overall Benefits

- Financial return on investment through gas savings
- Increased operational efficiency
- Reduced O&M costs
- Reduced air pollutants (VOCs and HAPs)

Is Recovery Profitable?

Three Options for Minimizing Glycol Dehydrator Emissions

Option	Capital	Annual O&M	Emissions	Payback
	Costs ¹	Costs ¹	Savings	Period) ²
Optimize Circulation Rate	Negligible	Negligible	11,160 – 111,600 m³/year	Immediate
Install Flash	\$6,500 -	Negligible	20,100 – 301,400	4 – 11
Tank	\$18,800		m³/year	months
Install Electric Pump	\$1,400 - \$13,000	\$165 - \$6,500	10,200 – 102,000 m³/year	< 1 month – several years

- 1 All costs represented in U.S. economics
- 2 Gas price of \$7/Mcf (\$250/thousand m³)

Project Summary for India

Installing a flash tank separator on a glycol dehydrator

Project Description: A dehydrator with an energy-exchange pump circulating glycol at 0.6 m³/hour (150 gallon/hour)

Gas Saved:	100,500 cubic meters per year (3,548 Mcf per year)		
Sales Value ¹ :	\$10,600		
Capital and Installation Cost ² :	(\$9,160)		
Operating and Maintenance Cost ² :	(\$0) per year		
Payback Period:	10 months		

1 – Gas price in India \$3/Mcf (\$106/thousand m³)

2 – All costs have been converted to an Indian basis using the methodology described in US Natural Gas STAR program success points to global opportunities to cut methane emissions cost-effectively, Oil and Gas Journal, July 12, 2004

Discussion Questions

- To what extent are you implementing these technologies?
- How can these technologies be improved upon or altered for use in your operation(s)?
- What is stopping you from implementing these technologies (technological, economic, lack of information, manpower, etc.)?