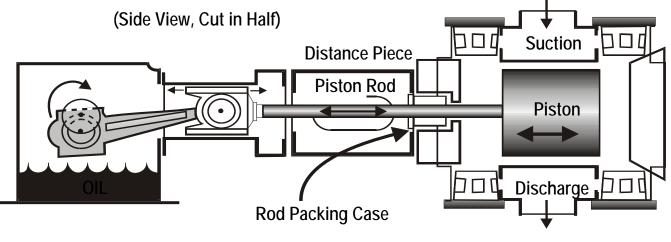
Methane to Markets

Cross-Sector Methane Emission Reduction Opportunities

Advancing Project Development in India through Public Private Partnerships

22 – 23 February, 2007

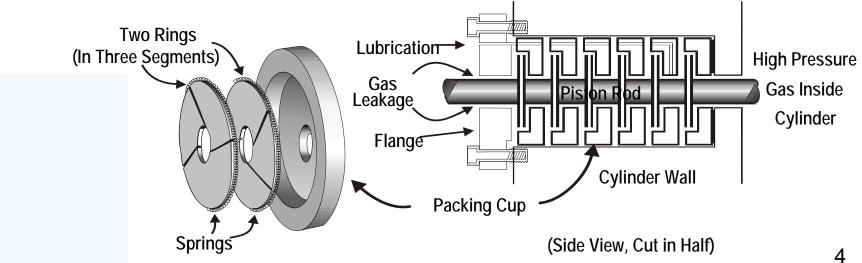

Agenda

- Methane Losses from Reciprocating Compressors
- Methane Losses from Centrifugal Compressors
- Methane Emission Savings with Directed Inspection and Maintenance (DI&M)
- Discussion Questions

Methane to Markets

Methane Losses from Reciprocating Compressors

- Reciprocating compressor rod packing leaks some gas by design
 - Newly installed packing may leak 1.7 cubic meters per hour (60 cubic feet per hour)
 - Worn packing has been reported to leak up to 25.5 m³/hour (900 cf/hour)



cubic meters $= m^3$, cubic feet = cf

Methane to Markets

Reciprocating Compressor Rod Packing

- A series of flexible rings fit around the shaft to prevent leakage
- Leakage may still occur through nose gasket, between packing cups, around the rings and between rings and shaft

Methane Losses from Rod Packing

Emission from Running Compressor	24,600	m ³ /year-packing
Emission from Idle/Pressurized Compressor	36,000	m ³ /year-packing
Leakage from Packing Cup	19,500	m ³ /year-packing
Leakage from Distance Piece	8,500	m ³ /year-packing

Leakage from Rod Packing on Running Compressors				
Packing Type Bronze Bronze/Steel Bronze/Teflon Teflon				
Leak Rate (m ³ /year)	17,300	15,700	37,300	5,900

Leakage from Rod Packing on Idle/Pressurized Compressors				
Packing Type	Bronze	Bronze/Steel	Bronze/Teflon	Teflon
Leak Rate (m ³ /year)	17,400	N/A	36,500	5,400

Source: Cost Effective Leak Mitigation at Natural Gas Transmission Compressor Stations – PRCI/ GRI/ EPA PR-246-9526

35 cubic feet is about 1 cubic meter

Methane to Markets

Methane Savings Through Rod Packing Replacement

- Assess costs of replacements (U.S. costs)
 - A set of rings: \$675 to \$1,080 (with cups and case) \$2,025 to \$2,500
 - Rods:

\$2,430 to \$13,500

 $DF = \frac{i(1+i)^n}{(1+i)^n - 1}$

- Special coatings such as ceramic, tungsten carbide, or chromium can increase rod costs
- Determine economic replacement threshold
- Partners can determine economic threshold for all replacements

Economic Replacement Threshold (m³/hour) = $\frac{CR * DF * 1,000}{(H * GP)}$

Where:

- CR = Cost of Replacement (\$)
- DF = Discount factor (%) at interest i
- H = Hours of compressor operation per year
- GP = Gas price (\$ per thousand cubic meter)

Is Rod Packing Replacement Profitable?

Periodically measure leakage increase

		Rin	gs Only ¹		Roda	and Rings ¹	
	Rings:		\$1,200		Rings:	\$1,200	
	Rod:		\$0		Rod:	\$7,000	
(Operating:		8,000 hou	rs per year	Operating:	8,000 hour	s per year
	Leak Redu	uction			Leak Reduction		
	Expect	ed	Payback ²		Expected	Payback ²	
	(m³/ho	ur)	(years)		(m³/hour)	(years)	
	1.3		0.5		10.0	0.5	

Leak Reduction	
Expected	Payback ²
(m ³ /hour)	(years)
1.3	0.5
0.7	1
0.3	2
0.2	3

Leak Reduction	
Expected	Payback ²
(m³/hour)	(years)
10.0	0.5
5.1	1
2.7	2
1.9	3

- 1 All costs and revenues are represented in U.S. economics
- 2- Gas price of \$7/Mcf (\$250/thousand m³)

Project Summary for India

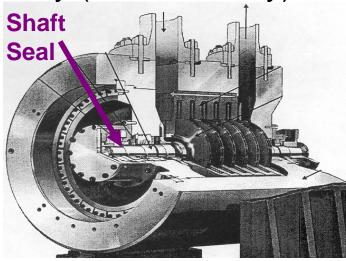
Replace reciprocating compressor rod packing

Project Description: Replace rods and rings on a reciprocating compressor

Methane Saved:	24,500 cubic meters per year (865 Mcf per year)
Sales Value ¹ :	\$2,600
Capital and Installation Cost ² :	(\$10,000) for rods and rings
Operating and Maintenance Cost ² :	(\$50) per year
Payback Period:	4 years

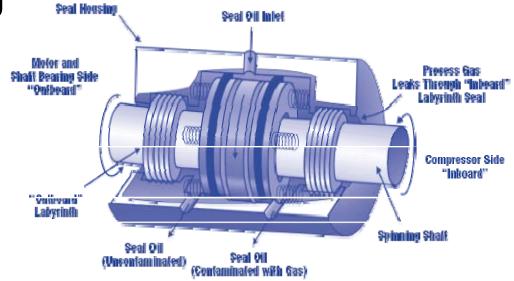
1 – Gas price in India \$3/Mcf (\$106/thousand m³)

2 – All costs have been converted to an Indian basis using the methodology described in US Natural Gas STAR program success points to global opportunities to cut methane emissions cost-effectively, Oil and Gas Journal, July 12, 2004

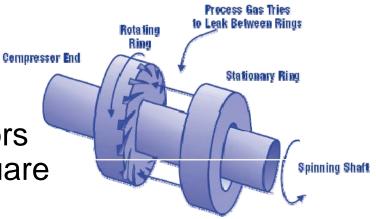

Agenda

- Methane Losses from Reciprocating Compressors
- Methane Losses from Centrifugal Compressors
- Methane Emission Savings with Directed Inspection and Maintenance (DI&M)
- Discussion Questions

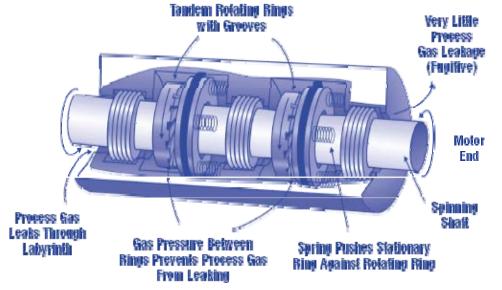
Methane Losses from Centrifugal Compressors


- Centrifugal compressor wet seals leak little gas at the seal face
 - Seal oil degassing may vent 1.1 to 5.7 m³/minute (40 to 200 cf/minute) to the atmosphere
 - A U.S. company reported wet seal emissions of 2,124 m³/day (75,000 cf/day)

Centrifugal Compressor Wet Seals


- High pressure seal oil circulates between rings around the compressor shaft
- Gas absorbs in the oil on the inboard side
- Little gas leaks through the oil seal
- Seal oil degassing vents methane to the atmosphere

Reduce Emissions with Dry Seals


- Dry seal springs press the stationary ring in the seal housing against the rotating ring when the compressor is not rotating
- At high rotation speed, gas is pumped between the seal rings creating a high pressure barrier to leakage
- Only a very small amount of gas escapes through the gap
- 2 seals are often used in tandem
- Can operate for compressors up to 3,000 pounds per square inch gauge (psig)* safely

Methane Savings through Dry Seals

- Dry seals typically leak at a rate of only 0.8 to 5.1 m³/hour (0.5 to 3 cf/minute)
 - Significantly less than the 1.1 to 5.7 m³/minute (40 to 200 cf/minute) emissions from wet seals
- Gas savings translate to approximately \$112,000 to \$651,000 at \$7/Mcf (\$250/thousand m³)

Economics of Replacing Seals

 Compare costs and savings for a 15 centimeter (6inch) shaft beam compressor

	Dry Seal	Wet Seal
Cost Category	(\$)	(\$)
Implementation Costs ¹		
Seal costs (2 dry at \$10,000 per shaft-inch, with testing)	\$162,000	
Seal costs (2 wet at \$5,000 per shaft-inch)		\$81,000
Other costs (engineering, equipment installation)	\$162,000	\$0
Total Implementation Costs	\$324,000	\$81,000
Annual Operation & Maintenance	\$14,100	\$102,400
Annual Methane Emissions (8,000 hours per year)		
2 dry seals at a total of 0.2 m ³ per minute	\$20,160	
2 wet seals at a total of 2.8 m ³ per minute		\$336,000
Total Costs Over 5-Year Period	\$495,300	\$2,273,00
Total Dry Seal Savings Over 5 Years		
Savings	\$1,777,700	
Methane Emissions Reductions (1,300,000 m ³ per year)	6,500,000	
1 – All costs and revenues are represented in U.S. economics.		

2 – Gas price \$7/Mcf (\$250/thousand m³)

Is Wet Seal Replacement Profitable?

- Replacing wet seals in a 15 centimeter (6 inch) shaft beam compressor operating 8,000 hours per year
 - Net Present Value = \$1,216,000
 - Assuming a 10% discount over 5 years
 - Internal Rate of Return = 125%
 - Payback Period = 10 months
 - Ranges from 4 to 16 months based on wet seal leakage rates between 1.1 and 5.7 m³/minute (40 and 200 cf/minute)
- Economics are better for new installations

Project Summary for India

Replace centrifugal compressor wet seals with dry seals

Project Description: Replace wet seals with dry seals for a 15 centimeter (6-inch) shaft beam compressor

Methane Saved:	1,300,000 cubic meters per	
	year (45,120 Mcf per year)	
Sales Value ¹ :	\$135,000	
Capital and Installation Cost ² :	(\$395,000)	
Operating and Maintenance Cost ² :	(\$600) per year	
Payback Period:	3 years	

1 – Gas price in India \$3/Mcf (\$106/thousand m³)

2 – All costs have been converted to an Indian basis using the methodology described in US Natural Gas STAR program success points to global opportunities to cut methane emissions cost-effectively, Oil and Gas Journal, July 12, 2004

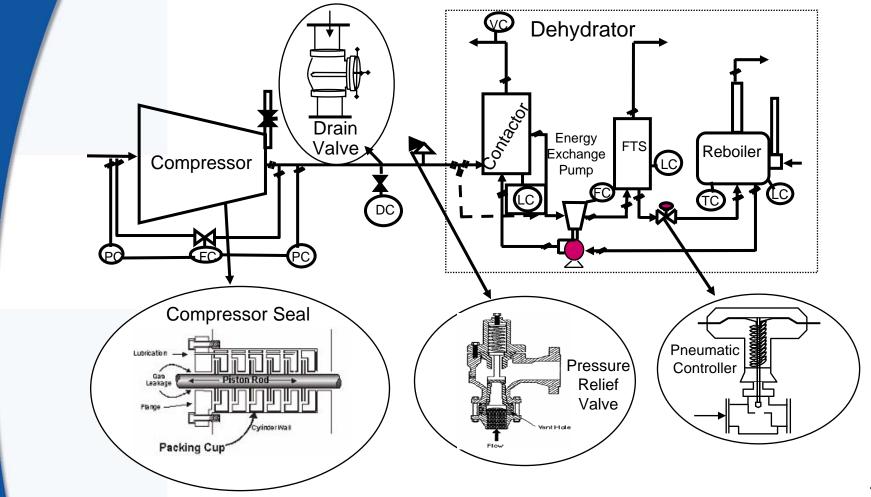
Agenda

- Methane Losses from Reciprocating Compressors
- Methane Losses from Centrifugal Compressors
- Methane Emission Savings with Directed Inspection and Maintenance (DI&M)
- Discussion Questions

What is the Problem?

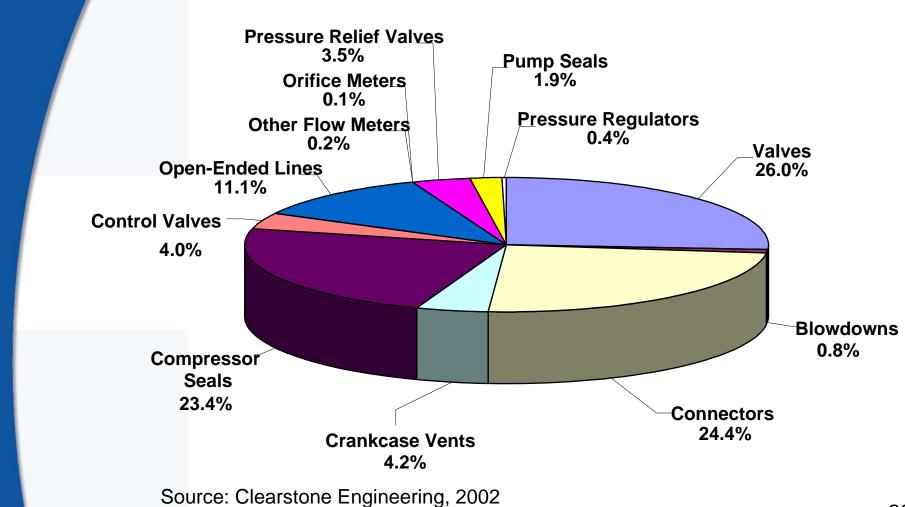
- Natural gas leaks are <u>invisible</u> and <u>go</u> <u>unnoticed</u>
- US companies find that valves, connectors, compressor seals, and open-ended lines (OELs) are major sources

- Estimated natural gas leaks in India


Production:	136 million m ³	4.8 Bcf/year
Processing:	193 million m ³	6.8 Bcf/year
Transmission:	329 million m ³	11.6 Bcf/year
Sources:		

1 – EPA. Global Anthropogenic Emissions of Non-CO2 Greenhouse Gases 1990-2020 (EPA Report 430-R-06-003)

2 - US Natural Gas STAR program success points to global opportunities to cut methane emissions cost-effectively, Oil and Gas Journal, July 12, 2004

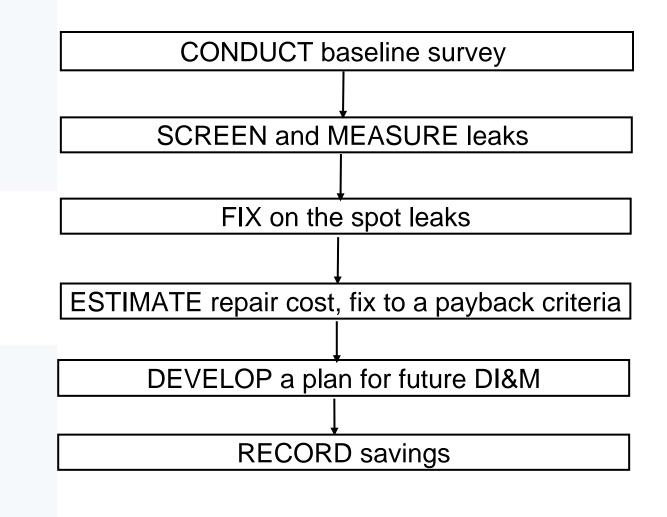


What are the Sources of Emissions?

Distribution of Losses from Equipment Leaks by Type of Component

Methane to Markets

Methane Recovery: Directed Inspection & Maintenance (DI&M)


- Fugitive losses can be reduced dramatically by implementing a DI&M program
- Directed Inspection and Maintenance
 - Voluntary program to identify and fix leaks that are cost effective to repair
 - Choice of leak detection technologies
 - Provides valuable data on leakers with information of where to look
 - Strictly tailored to company's needs

Infrared Leak Imaging Camera

How Do You Implement DI&M?

How Do You Detect the Leaks?

- Screening find the leaks
 - Soap bubble screening
 - Electronic screening (sniffer)
 - Toxic Vapor Analyzer (TVA)
 - Organic Vapor Analyzer (OVA)
 - Ultrasound Leak Detection
 - Acoustic Leak Detection
 - Infrared Leak Detection/Imaging

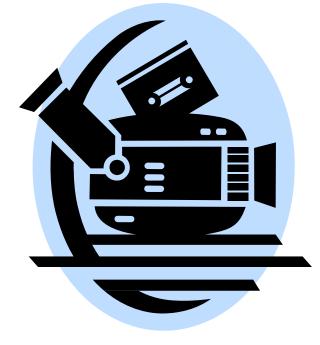
Acoustic Leak Detection

How Do You Measure the Leaks?

- Evaluate the leaks detected measure results
 - High Volume Sampler
 - Toxic Vapor Analyzer (correlation factors)
 - Rotameters
 - Calibrated
 Bag
 - Engineering
 Method

DI&M by Remote Leak Detection

- The trick has always been finding those few leaking needles in the haystack of components
- Real-time detection of gas leaks
 - Quicker identification & repair of leaks
 - Screen hundreds of components an hour
 - Easily screen inaccessible areas



Remote Sensing and Leak Detection Video

 Techniques to find fugitive leaks with new technology and equipment

5 minutes Available for download at www.epa.gov/gasstar

Cost-Effective Examples

Average Repair Cost for Equipment at Compressor Stations				
Component Description	Type of Repair	Average Cost ¹ (\$)		
Flange – 6 inch	Change Gasket	\$371		
OEL on Valve	Grease	\$56		
Gate Valve	Teflon Repack	\$50		
Pressure Relief Valve – 1 inch	Replace	\$1,238		
Rod Packing	cking Pull Packing Case and Rods to Change Rings, Rework Packing Case			
Union Tighten \$12		\$12		
Source: Indaco Air Quality Services, Inc., 1999, Cost Effective Leak Mitigation at Natural Gas Transmission Compressor Stations.				

1 – All costs and revenues are represented in U.S. economics.

Project Summary for India

Directed Inspection and Maintenance Program

Project Description: Begin a DI&M Program and compressor stations

Methane Saved:	833,000 cubic meters per year
	(29,413 Mcf per year)
Sales Value ¹ :	\$88,200
Baseline Survey Cost ² :	(\$400)
Total Repair Cost ² :	(\$31,800) per year
Payback Period:	4 months

1 – Gas price in India \$3/Mcf (\$106/thousand m³)

2 – All costs have been converted to an Indian basis using the methodology described in US Natural Gas STAR program success points to global opportunities to cut methane emissions cost-effectively, Oil and Gas Journal, July 12, 2004

DI&M - Lessons Learned

- A successful, cost-effective DI&M program requires measurement of the leaks
- A high volume sampler is an effective tool for quantifying leaks and identifying cost-effective repairs
- A relatively small number of large leaks contribute most of a compressor station's fugitive emissions
- The business of leak detection is changing dramatically with new technology

Discussion Questions

- To what extent are you implementing these opportunities?
- How could these opportunities be improved upon or altered for use in your operation?
- Can you suggest other methods for reducing emissions from compressors?
- What are the barriers (technological, economic, lack of information, regulatory, focus, manpower, etc.) that are preventing you from implementing these practices?