

Efficient Pigging of Gathering Lines

Energy Management Workshop for Upstream and Midstream Operations

January 17, 2007

Agenda

- Methane Losses from Pipeline Pigging
- Methane Recovery
- Industry Experience
- Is Recovery Profitable?
- Discussion Topics

Methane Losses from Pipeline Pigging

- Pipeline pigging contributes to
 - the 4,060 Mcf methane per year vented by an average processing plant
 - the 2,886 Mcf methane per year of fugitive methane emissions at an average processing plant

Pigging Gathering Lines

 Hydrocarbons and water condense inside wet gas gathering lines, causing pressure drop and reducing gas flow

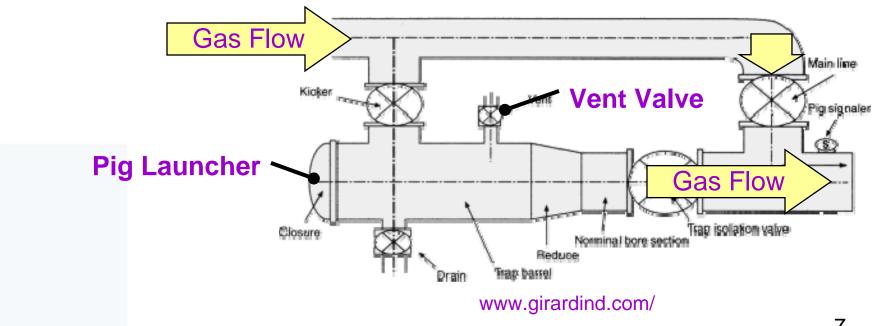
- Periodic line pigging removes liquids and debris to improve gas flow
- Efficient pigging:
 - Keeps pipeline running continuously
 - Keeps pipeline near maximum throughput by removing debris
 - Minimizes product losses during launch/capture

www.girardind.com/

Pigging Applications

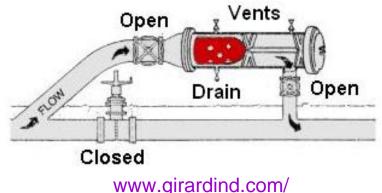
- Pipeline pigs come in a variety of shapes and sizes for different applications
 - Cleaning pigs
 - Have brushes or blades to help remove debris
 - Sealing pigs
 - Make tight seal for removing liquids from the pipe
 - Inspection pigs
 - Specialized pigs outfitted with instruments to monitor the pipeline integrity

www.westernfilterco.com


Pigging and Methane Losses

- Gas lost when launching and receiving a pig
- Fugitive emissions from pig launcher/receiver valves
- Gas lost from storage tanks receiving condensate removed by pigging
- Gas vented from pipeline blowdowns

How Does Pigging Vent Methane?


- Gathering lines have built-in pig launchers
- Pig launchers have isolation valves for loading pigs, pressurizing pigs, and launching pigs with gas bypassed from the pipeline
- Launcher pressuring/depressuring loses methane out the vent valve

Pigging Vents Methane Twice!

- Methane lost through vent valve on the launcher and again through vent valve on the receiver
 - Once receiver is isolated from the line, it must be depressured to remove the pig
 - Liquids ahead of the pig drain to a vessel or tank
- Isolation valve leaks cause excessive venting to depressure

Estimating Pigging Vents

E = P * V / 14.7 * n * f

where:

- E = methane emissions (cf)
- P = Gathering line pressure (psia)
- V = Launcher and receiver volume (cf)
- n = % methane
- f = number of piggings
- Pig trap isolation valve leakage greatly increases this minimum amount of gas venting

Estimating Emissions from Pigging

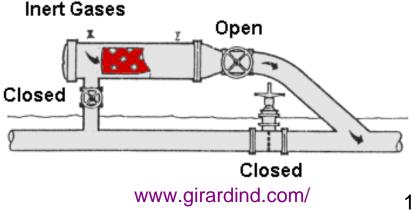
Estimating V

Line Diameter		V
(inches)		(cf)
	6	0.9
	12	4.6
	18	11.5
	26	27.7
	34	65.2
	48	170.7

Adapted from www.pigsunlimited.com

- Estimating P
 - Default: 315 psia

Estimating n
 Default: 78.8 % methane


Methane Recovery: Use Inert Gases

- Pipeline maintenance requires pipe section blowdown before work can begin
- Gas in pipeline is usually vented to the atmosphere
- Inert gas can be used to drive a pig down the section of pipe to be serviced, displacing the natural gas to a product line rather than venting
- Inert gas is then blown down to the atmosphere, avoiding methane loss

Inert Gas Setup

- Existing pig launcher can be used, set up to work with inert gases
- Portable nitrogen supply connected to the pig launcher vent
- Close valve on the main pipeline, pressurize launcher with inert gas, open launcher to
 Inert Gases
 main pipeline
- Supply nitrogen until pig reaches receiver

Industry Experience

- One partner reported using inert gas to purge six pipelines for maintenance
- Gas savings from these applications was 538 Mcf
- These savings correspond to a typical application of:
 - 2 miles of 10 inch diameter pipeline
 - Nitrogen at 280 psia

Is Recovery Profitable?

- No capital costs with existing pigging facilities
- Labor costs are estimated at eight hours for two operators
- Nitrogen costs are roughly \$8/Mcf
- Increased safety is the primary benefit of this project
- Gas savings are a secondary benefit, as the labor and nitrogen costs outweigh the gas value

Discussion Topics

- Identify other opportunities to reduce methane emissions from pigging
- Discuss further information required to identify and evaluate opportunities
- Any barriers to implementing the technologies and practices in this presentation

Contact Information

- Roger Fernandez
 202-343-9386
 fernandez.roger@epa.gov
- epa.gov/gasstar
- methanetomarkets.org