

Directed Inspection & Maintenance Programs for Reducing Methane Emissions

Modern Technologies of Detection and Elimination of Methane Leakages from Natural Gas Systems September 14-16, 2005 Tomsk (Akademgorodok, Russia)

Presented by

David Picard

Clearstone Engineering Ltd. Calgary, Alberta, Canada www.clearstone.ca

Leak Characteristics

- Contribute significantly to total VOC and GHG emissions at UOG facilities.
- Only a few percent of the components at a site actually leak.
- Most of the leakage is usually from just a few big leakers.
- Big leakers often go unnoticed because they occur in difficultto-access, low-traffic, crowded or noisy areas, or the amount of leakage is not fully appreciated.
- Big leakers may also occur due to demanding applications coupled with the high cost or difficulty of repairs.
- Leakage is mostly from components in gas/vapour service.

- Minimize the potential for big leakers and provide early detection and repair of these when they occur.
- Focus efforts on the areas most likely to offer the greatest impact and benefit, with coarse or less frequent screening of other areas.
- Only repair a component if it poses a health, safety, environmental or operability concern or is economical to repair.
- Implement repairs as soon as possible, or at the next facility turnaround if a major shutdown is required.
- Consider leakage directly to the atmosphere as well as into vent, flare, drain and blowdown systems.

- Most likely sources of big leaks:
 - Compressor seals.
 - Open-ended lines and blowdown systems.
 - Pressure relief valves.
 - Pressure-vacuum safety valves.
 - Tank hatches.
- Least likely sources of big leaks:
 - Valve stem packings.
 - Connectors.
- Components in thermal cycling, vibration or cryogenic service have increased leakage.
- Fuel gas systems are leak prone.
- Components in odorized or H₂S service leak less than those in non-odorized or non-toxic service.

- Attractive payback (often <6 months).
- Reduced maintenance costs.
- Reduced downtime.
- Improved process efficiency.
- Safer work environment.
- Cleaner environment.
- Resource conservation.

Fugitive Equipment Leaks

Facility Type	Facility ID	Number of Components Surveyed	Leak Frequency	Emis	ssions From Al	Emis	Contribution to THC Emissions		
				тнс	Methane	GHG	Value	Top 10 Sources	Top 5 Sources
					Weunane		Value	3001003	Sources
					[tonnes/	[tonnes	()		
			[%]	[10 ³ m ³ / year]	year]	CO ₂ E/year]	[\$/year]	[%]	[%]
	GP-1	56 461	1.7		997	20 934	500 253		
	GP-2	16 050	3.5	1 264	471	9 907	320 608	36	23
	GP-3	14 424	3.0	2 203	1 412				54
	GP-4	14 174	4.0		1 376		553 248		23
Gas Plant	GP-5	11 556	3.3	2 113	1 215		621 061	33	20
	GP-6	13 133	2.5	739	186	3 918	386 538	57	40
	GP-7	13 471	1.2		299			93	88
	GP-8	3 672	10.3	4 063	2 334	49 186		77	71
	GP-9	5 979	0.6		29				
TOTAL	1	148 920	í	15 123	8 320	174 923	4 393 854	· · · · · · · · · · · · · · · · · · ·	/ /
AVERAGE	í	16 547	2.5	1 680	924	19 436	488 206	54	43
	CS-1	608	5.1	198	110	2 3 1 2	61 572	90	
	CS-2	4 626	1.1	166	98				
	CS-3	3 084	0.7		169		98 802		
	CS-4	6 168	1.0		194				
Compressor Station		1 568	4.2		80		33 552		
	CS-6	224	1.3		0		189		
	CS-7	1 391	1.9		4	94		88	
	CS-8	2 115	1.8		67	1 4 1 4			
	CS-9	2 5 1 6	1.1	70	45			91	69
TOTAL	í	22 300	·'	1 317	767				[]
AVERAGE	1	2 478	1.5	146	85	1 792	43 992	83	64
	WS-1 to 3	1 474	0.2	2	í 1'	18	501	100	
	WS-4 to 8	1 617	1.5		í 1'	13		88	
	WS-9 to 12	1 797	0.4		í 1'	30			
TOTAL	1	4 888	·′	5	3			·	(
AVREAGE	í	407	0.7					97	92

Residual Flaring

Facility	Residual THC Flaring Rate	THC Emissions	Methane Emissions	GHG Emission	Value of Flared Gas	
	[10 ³ m ³ /day]	[103m ³ /year]	[103m ³ /year]	tonnes CO₂E/yeaı	[\$/year]	
Gas Plant #1	0.56	4	3	540	53 765	
Gas Plant #2	NA	NA	NA	NA	NA	
Gas Plant #3	5.28	39	28	5 136	227 445	
Gas Plant #4	3.43	29	18	3 336	342 272	
Gas Plant #5	NA	NA	NA	NA	NA	
Gas Plant #6	2.83	21	14	5 590	219 000	
Gas Plant #7	NA	NA	NA	NA	NA	
Gas Plant #8	10.99	80	66	10 266	1 249 588	
Gas Plant #9	NA	NA	NA	NA	NA	
TOTAL	23.09	172	130	24 868	2 092 070	
AVERAGE	2.57	19	14	2 763	232 452	

Leak Detection

- Bubble Tests
- Handheld Vapor Sensors
- Ultrasonic Leak Detectors
- IR Cameras

Leak Quantification

- Bagging
- Hi-Flow Sampler
- Stack Testing Methods (Velocity Probes)
- Total Capture and Flow Measurement
- Tracer Tests
- Remote Sensing (e.g., DIAL)

- DI&M is a rational approach to managing fugitive emissions.
 - Effective means of achieving significant cost-effective reductions in methane emissions.
 - An environmentally responsible choice.
- A BMP for fugitive emissions management is currently being developed in Canada (CAPP, SEPAC, EC and EUB) and is expected to become a regulatory requirement (End of 2005).
- A multi-year study for US EPA/GRI/KSU will also be producing an DI&M BMP (Fall 2005).