gti

Methane to Markets Ministerial Meeting November 15-17 Washington, DC

Methane Emissions From the U.S. Natural Gas Industry *Quantification and Mitigation*

Dr. Robert Stokes Gas Technology Institute

Global Anthropogenic Methane Emissions: 1860-1994 (Stern & Kaufmann)

Year

World at Night

gti₅

U.S. Gas Natural Gas Industry Methane Emissions

Overall Rationale

- The increased use of natural gas has been proposed as a strategy to reduced global warming.
 - Less CO₂ per unit of energy consumed in combustion
- Some losses (releases) of methane (a potent greenhouse gas) occur during production and delivery of natural gas
- Critical questions:
 - Would increased utilization of natural gas substantially increase methane releases?
 - If so, what would be the net effect in terms of greenhouse gas releases?

GTI Methane Emissions Program

- Coordinated and cofunded program between GTI and USEPA
- Performance years of initial effort: 1991 to 1996
- Extensive Cooperation and Review
 - More than 30 energy companies
 - AGA
 - INGAA
 - USDOE and NOAA
 - National Labs
 - EPRI

General Approach for Estimating Methane Emissions

- Identify and characterize each emission source within the industry
- All types of significant sources identified
- Include all sectors
 - Production
 - Gas Processing
 - Transmission / Storage
 - Distribution
- Estimate methane emissions among industry elements and rollup the totals
- Use "Global Warming Potential" (GWP) Calculations to Assess Impact of Using Natural Gas to Replace Other Fossil Fuels

Global Warming Potential

- GWP = Impact of a Given Greenhouse Gas $Compared to CO_2$
 - Dependent upon the time period that is assumed
 - Re: Methane has a shorter half-life than CO₂

Time Period, yrs	GWP for Methane
50	34*
500	6.5

 With an integration interval of 50 years, one pound of Methane has the impact of 34 pounds of CO₂

Generic Flow Chart for the Natural Gas Industry

Summary of Methane Emission Estimates

- Methane emissions estimated to be 314 ± 105 bcf for the 1992 baseline year
- This represents 1.4 ± 0.5% of gross natural gas production
- The majority of methane losses in the natural gas industry are due to fugitive emissions

Future Supplies Come from Traditional and New Sources

2003 NPC Study

Contribution of Major Methane Sources to Total U.S. Anthropogenic Emissions*

gti_s

Natural Gas Methane Emissions Across Industry Sectors *

* Total Natural Contributions = 314 bcf per year

Distribution	Production
Gas Processing	Transmission / Storage

Methane Emissions from the Natural Gas Industry by Type

Major Types of Sources in Each Sector

Sector	Sources		
	Pneumatic Devices		
Production	Fugitive Emissions		
	Dehydrators		
Gas	Fugitive Emissions		
Processing	Compressor Exhaust		
Transmission & Storage	Fugitive Emissions		
	Blow and Purge		
	Pneumatic Devices		
	Compressor Exhaust		
Distribution	Underground Pipeline Leaks		
	Meter and Pressure Regulating Stations		
	Customer Meters		

Leakage Rate Versus Age for U.S. Compressor Stations

gti₅

Leak Rate per Engine

Example of Emissions Ranking from the Compressor Stations of a Single Transmission Company

Leakage Rate, MMscf per yr per facility

Examples of the Impact of Preventive Maintenance

Equipment Component	Action	Impact
Compressor Engine	Tightened the cylinder head	64,000 Mscf/yr → 3,250 Mscf/yr Savings: \$121 K/yr
Tube Fitting, ½ inch	Five minutes of repair work	4,100 Mscf/yr → 10 Mscf/yr Savings: \$8,200/yr
One-inch Fuel and Gas Pressure Relief Valve	Five hours of repair and \$125 of new parts	36,800 Mscf/yr → 104 Mscf/yr Savings: \$73,500/yr

Comparison of Equivalent CO₂ Emissions Among Fuel Types

	Lbs CO ₂ / mmBtu		Equivalent CO ₂ Ratios	
Fuel Type	GWP 6.5	GWP 34	GWP 6.5	GWP 34
Natural Gas	132	152	1.0	1.0
Fuel Oil	184	186	1.4	1.2
Coal	212	228	1.6	1.5

Summary

- Methane emissions estimated at 314 ± 105 Bscf/yr for the baseline year of 1992
- Natural gas industry represents about 20% of the total anthropogenic methane release
- Fugitive methane emissions are 62% of the natural gas contribution
- Increased use of natural gas to displace other fossil fuels yields a substantial net reduction in greenhouse gas impacts.
- Joint GTI / USEPA publications resulted in recommendations that identify significant opportunities for emissions reductions and savings for the industry.