#### International Methane Recovery and Project Opportunities In the Oil and Gas Industry

Methane to Markets Ministerial Meeting Track 3 – Oil and Gas November 15-17, 2004

Presented by

**David Picard** 

Clearstone Engineering Ltd. Calgary, Alberta, Canada www.clearstone.ca





# Experiences in North America and Western Europe



## Fugitive Equipment Leaks

#### • NOTEWORTHY CHARACTERISTICS:

- THC and CH4 emissions are mostly from components in gas service.
- Emission vary greatly between sites but older facilities tend to leak more than newer ones.
- 75 to 85% of emissions economic to reduce.
- Top 10 leaks typically contribute more than 80% of emissions from leaks.
- Leak control is an ongoing effort.
- Maintenance/repair costs tend to increase with component size but leaks don't.

#### • CHRONIC OR FREQUENT LEAKERS:

- Compressor Seals (34% leak)
- Open-ended lines (vent, drain, and blowdown systems) (20% leak).
- Components in vibration or thermal-cycling service.
- Components in fuel gas service (18% leak).
- Stem packings on rising stem valves.
- PVSVs and hatches on blanketed storage tanks.
- Pressure relief valves.

## Leakage at Transmission Facilities



## Venting and Flaring

#### • KEY SOURCES:

- Disposal of waste associated gas at oil production facilities.
- Casing gas vents at heavy oil wells.
- Gas operated devices.
- Still column off-gas vents on glycol dehydrators.
- Leakage into vent/flare header (5-10% of valves leak and 1-2% of these contribute 75%).
- Excessive purge gas rates.
- Other: I&M activities, well testing/servicing and pipeline tie-ins.

#### • NOTEWORTHY CHARACTERISTICS:

- High uncertainty in values:
  - Flows usually not metered and often reported as zero.
  - Vented volumes often reported as flared.
  - Leakage into vent and flare systems typically unaccounted.
  - Reliability of pilot or ignition systems sometimes a problem.
- Many systems based on outdated gas prices.

## Storage Tanks

#### • CONTROL OPPORTUNITIES:

- Flashing losses at production facilities.
- Unintentional gas carry-through to storage tanks:
  - Leaking drain and dump valves.
  - Malfunctioning level controllers.
  - Inefficient upstream gas/liquid separation.
  - Piping changes resulting in unstabilized product going to tanks.
- Malfunctioning vapor recovery systems:
  - Faulty blanket gas regulators or pressure controllers.
  - Fouled vapor collection lines.

#### • NOTEWORTHY CHARACTERISTICS

- Methane content minimal downstream of production facilities.
- Emissions often unnoticed on site.
- Vapors rich with NMVOCs and often difficult to utilize without processing.

## **Combustion Sources**

#### • CONTROL OPPORTUNITIES:

- Poor Thermal Efficiencies
  - Oversized engines, heaters and boilers.
  - Out of tune (e.g., poor air/fuel ratio).
  - Leakage past pistons in engines.
  - Internal valve and cylinder leakage in reciprocating compressors.
- Poor Overall Process Efficiencies
  - Excessive pressure drops.
  - Lack of waste heat utilization.
  - Fouled heat exchangers.
  - Excessive reboiler duties due to high chemical circulation rates.
- NOTEWORTHY CHARACTERISTICS:
  - Low CH4 emissions but good control economics due to value of avoided fuel/energy consumption.

## Why Target CH4 Emissions?

- CH4 and associated NMVOC emissions are significant (1.1% x production in Canada,\$1Billion/y).
- Attractive payback periods based on value of avoided losses alone (<1 yr).
- More immediate impact on climate change than CO<sub>2</sub> reductions (CH4 has a life of 12 yrs in the atmosphere & GWP of 56 on 20-yr time horizon).
- Reductions are eligible for GHG credits:
  - Vented or leaked natural gas:
    - Worth \$1.26/GJ at \$3/tonne of CO2E.
    - Worth \$4.19/GJ at \$10/tonne of CO2E.
  - Reduced flaring or fuel consumption:
    - Worth only about 13 percent of the corresponding value of unburned natural gas.

## Why are fugitive emissions and energy inefficiencies so large?

- Inadequate monitoring systems to detect & evaluate sensible reduction opportunities.
- Fuel gas often available at no cost or at wholesale prices.
- Inadequate reward or incentive programs:
  - Increased operating costs discouraged.
  - Facilities not credited for avoided production losses.
  - Facilities not credited for reduced environmental emissions.
  - Potential ownership issues (e.g., midstream operators).
  - Avoided losses may simply prolong the reservoir life rather than show an immediate economic benefit.
- Energy efficiency and emissions reduction not the primary business of oil & gas companies.



### **International Experiences**





## **General Comments**

• Key causes of CH4 emissions vary between facilities & countries:

- Inadequate I&M programs.
- Use of poor quality components and materials.
  - Compressor seal leaks in Uzbekistan (>2 x max value in N America).
  - Frequent pipeline ruptures in China.
- Poor designs and operating practices due to capital constraints.
  - Undersized piping.
  - Lack of adequate process controls.
  - Poor QA/QC.
  - Outdated or lack of emission control technologies.
- Restricted market for associated gas production.
- Less sensitized to environmental and energy efficiency issues.
- Generally greater control opportunities, but additional constraints & more difficult to evaluate.

### Romgas/ Transgas Gas Transmission System in Romania

A comparison of measured emissions from each of the compressor stations to average Canadian compressor station emissions.

| Site     | Measured Emissions                          |                                                 | Estimated Based on Canadian<br>Factors      |                                                 |  |
|----------|---------------------------------------------|-------------------------------------------------|---------------------------------------------|-------------------------------------------------|--|
|          | Methane<br>Emissions<br>(m <sup>3</sup> /d) | CO <sub>2</sub> E<br>Emissions<br>(tonnes/year) | Methane<br>Emissions<br>(m <sup>3</sup> /d) | CO <sub>2</sub> E<br>Emissions<br>(tonnes/year) |  |
| Butimanu | 4 720                                       | 24 548                                          | 619                                         | 3 320                                           |  |
| Danes    | 370                                         | 1 924                                           | 276                                         | 1 433                                           |  |
| Deleni   | 207                                         | 1 074                                           | 46                                          | 238                                             |  |
| Sinca    | 47.2                                        | 246                                             | 46                                          | 237                                             |  |

Compressor seals – 82% Leak Pressure safety valves – 45% Leak Valve stem packings – 35% Leak

## Measurement Data for China

| Pipeline                                                 | Length<br>(km) | Methane<br>Emissions<br>(tonnes/y) | Methane<br>Emissions/km<br>(t/year/km) | Annual<br>Throughput<br>(10 <sup>9</sup> m <sup>3</sup> /y) | Methane<br>Emissions/Th<br>roughput<br>(percent) |
|----------------------------------------------------------|----------------|------------------------------------|----------------------------------------|-------------------------------------------------------------|--------------------------------------------------|
| Production and Gathering<br>System in China              | 4,687          | 77,628                             | 16.6                                   | 3.325                                                       | 3.53                                             |
| Transmission/<br>Distribution System in<br>China         | 2,952          | 21,620                             | 7.2                                    | 3.15                                                        | 1.06                                             |
| U.S. Gas Production and<br>Gathering System <sup>3</sup> | 144,036        | 1,080,000                          | 7.5                                    | 609                                                         | 0.26                                             |
| U.S. Gas Transmission<br>Pipeline <sup>3,4</sup>         | 450,777        | 1,040,000                          | 2.3                                    | 526                                                         | 0.28                                             |
| Canadian Transmission<br>System <sup>5</sup>             | 15,520         | 85,892                             | 5.5                                    | 81.2                                                        | 0.15                                             |





## **Potential Barriers**

- Absence of domestic or foreign financial support.
- Lack of data for proper evaluation of opportunities by the investment and banking communities.
- Reluctance of industry and government agencies to release information due to perceived security issues.
- Domestic energy pricing polices that do not reflect the actual cost of energy supply.
- Resource ownership issues and corruption.
- Validation & verification of reductions are potentially difficult and costly.

• Simply burning methane instead of venting it reduces GHG emissions by a factor of 7.8.

#### • Flare gas recovery:

- 9.2 percent of conserved gas is consumed as fuel (production, processing and transmission).
- Negative GHG reduction if venting and fugitive equipment leaks >13% of system throughput.
  - Losses >0.7% of gas system throughput are high.
  - Russia (Gazprom) claims losses of 5 to 10%+
  - Some eastern block countries claim losses of 10 to 30%.
  - Theft a potential factor in many of these cases.

- Optimized or targeted approach is warranted.
- Oil Systems:
  - Opportunities for large reductions in venting/flaring through conservation of associated gas.
  - Economic access to local markets or practicable opportunities to re-inject or utilize the gas production are critical.
  - Best opportunities at central batteries and heavy oil batteries.
- Gas Systems:
  - Value of gas increases in moving downstream while emissions tend to increase in moving upstream (i.e., more infrastructure, more venting and flaring).
  - Gas transmission systems primarily candidates for leak control.
  - Gas plants and gathering compressor stations candidates for energy management & leak control opportunities.