Major Methane Emission Sources from Offshore Platforms and Floating Production, Storage and Offloading Vessels (FPSOs)

EPA Middle East Meeting Washington, D.C. 2 October 2012

Don Robinson Vice President ICF International

Agenda

- Offshore Platform Overview
- Identifying Offshore Emission Sources
 - Centrifugal Compressors
 - Cold Vents
 - Glycol Dehydrators
 - Storage Tanks
 - Fugitives
- Identifying, Prioritizing, and Implementing Mitigation Technologies

Offshore Platforms and FPSOs

- As offshore oil and natural gas production increases worldwide, this sector will increasingly contribute to industry methane emissions
- Offshore production presents many unique challenges
 - Limited space for additional equipment
 - Limited local demand for captured gas
 - Distance to market and lack of infrastructure

Identifying Offshore Emission Sources

- In 2010, offshore production of oil and natural gas made up 9% of methane emissions from the U.S. Production Sector and 6% of total methane emissions
 - Accounted for 41% of total methane emissions in the petroleum sector
- Sources of methane emissions on an offshore production platform can vary depending on configuration, and include:
 - Centrifugal compressor wet seal oil degassing
 - Cold vents
 - Storage tank venting
 - Glycol dehydrators
 - Fugitives

Offshore Platform Overview

Centrifugal Compressor Emissions

- Most methane emissions from centrifugal compressor occur during from the degassing and recirculation of the seal oil
 - Vent rates can be upwards of 2.9 million m³ methane per year
- According to a 2010 EPA study, centrifugal compressor wet seal oil degassing was the *single largest source* of emissions on offshore platforms
 - Accounts for nearly 78% of total emissions

Cold Vent Emissions

- Cold vents are common vent stacks that handle routine and non-routine releases of natural gas
 - Compressor blowdowns
 - Process upsets
 - Emergency shutdowns
- Second largest source of emissions, based on 2010 EPA report
 - Account for nearly 9% of total methane emissions

Storage Tank Emissions

- Storage tanks have several sources of emissions:
 - Flashing losses occur when crude is transferred from containment at a high pressure to containment at a lower pressure
 - Working losses occur when crude levels change and when crude in the tank is agitated
 - Standing losses occur with daily and seasonal temperature and pressure changes
- All of these losses release methane and other light hydrocarbons, which are often simply vented to the atmosphere

Fugitive Emissions

- Fugitive emissions occur randomly from various components installed on an offshore platform
 - Valves
 - Flanges
 - Connectors
 - Open-ended lines
- Emissions are often impossible to detect without specialized equipment
- Collectively, fugitives account for 7% of offshore emissions

Identifying, Prioritizing, and Implementing Mitigation Technologies

- The offshore environment provides many unique challenges that can hinder emissions mitigation
 - Harsh and isolated environment
 - Higher overall costs
 - Fewer options for recovered methane
- Therefore, it is critical to identify and implement the most cost-effective technologies

Source: rigzone.com

Step 1. Determine Platform Emissions

- Determine methane emissions sources on the platform
- Decide upon methane emissions calculation methodology for sources on the platform
 - Direct measurement, engineering calculations, or application of emissions factors
- Collect activity data and supporting measurement necessary for the defined calculation methodologies
 - Gas composition analyses will aid in determining methane emissions as the methane content of associated natural gas can change
- Calculate methane emissions for each source using the collected activity data and following the chosen calculation methodologies

Step 2. Identifying Mitigation Technologies and Practices

Emission Source	Technology or Practice
Centrifugal compressor wet seal degassing	Replace centrifugal compressor wet seals with dry seals or capture seal oil vent gas
Cold vents	 Route individual vented emissions sources to vapor recovery unit Route routine compressor blowdowns to fuel gas system
Storage tank venting	Install vapor recovery unitScrubber dump valve testing and repair
Glycol dehydrators	 Route non-condensable gas from condenser vent to vapor recovery unit Optimize glycol circulation rate
Fugitives	Directed inspection and maintenance program

Step 3. Determine Costs

- The Natural Gas STAR Program technical documents report ranges of costs for emissions mitigation options
- Costs for applying the same technologies/practices offshore can be significantly higher
 - Capital costs are higher as equipment may need to be more robust or reduced in size
 - Installation costs can be much higher due to the transport and lifting of equipment
 - A derrick barge for lifting heavy equipment of up to 45,000 kg (100,000 lb) can cost up to U.S.\$70,0000 per day
 - O&M costs are inflated due to an adverse operating environment
 - In the Gulf of Mexico, labor rates are generally 30% higher than those of onshore operators

Step 4. Determine Savings

- To estimate emissions reductions, each mitigation option must be examined individually.
 - Some options, such as installing instrument air to power pneumatic devices, can eliminate 100% of methane emissions
 - Other options, such as DI&M, have been reported to reduce between 60–80% of total fugitive methane emissions
- Installing meters or "before and after" direct measurement can determine gas savings
 - Actual savings from each installed mitigation option should be recorded to track effectiveness of the project.

Contact and Further Information

Don Robinson

ICF International Vice President +1 (703) 218-2512 donald.robinson@icfi.com

Global Methane Initiative

globalmethane.org

Recommended Technologies (Arabic)

epa.gov/gasstar/tools/arabic/index.html

