Routing Centrifugal Compressor Seal Oil De-gassing Emissions to Fuel Gas as an Alternative to bp Installing Dry Seals

Oil and Gas Subcommittee – Technical and Policy Sessions

October 14, 2011 Krakow, Poland

Reid Smith BP, Senior GHG and Air Quality Advisor

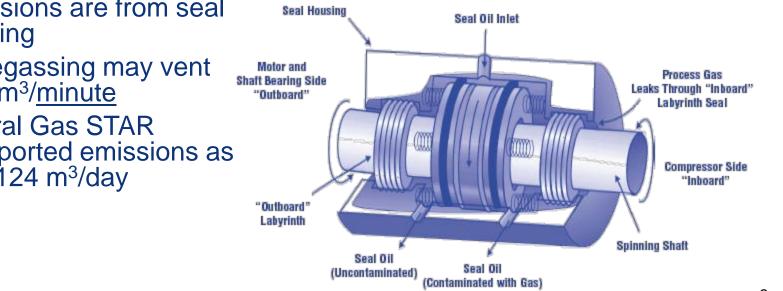
NaturalGas PA POLLUTION PREVENTER

Agenda

- Natural Gas STAR Program Background
- Centrifugal Compressor Wet Seals
- A Retrofitting/Installing Dry Seals
- A Background and Summary of North Slope Study
- Overview of North Slope Operations
 - Central Gas Facility
 - Central Compressor Plant
- Sour Seal Oil Vapor Recovery System
- A Early Results: BP Measurements of CCP
- A Preliminary Results: Velocity Measurements
- Applicability/Benefits
- Conclusions and Next Steps
- Contact Information

Natural Gas STAR Program Background

- The Natural Gas STAR Program is a flexible, voluntary partnership with oil and natural gas companies—both in the United States and internationally to promote cost-effective technologies and practices that reduce emissions of methane.
- The main goal of Natural Gas STAR is to work with Partner companies to develop technical information and then facilitate the implementation of mitigation practices across the industry.
- As both a potent greenhouse gas and clean energy source, reducing methane emissions has both environmental and economic benefits.
- BP has been an active Partner since 1995, contributing to the Natural Gas STAR Program's technical information and technology transfer efforts.

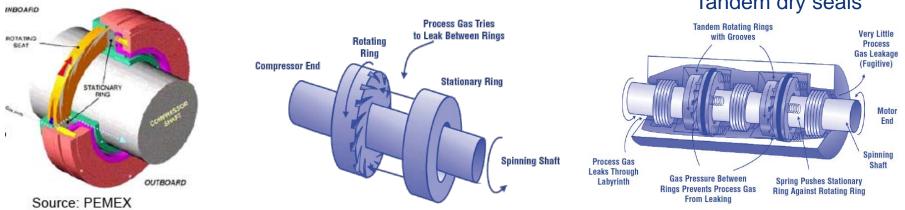


Centrifugal Compressor Wet Seals

- High pressure seal oil circulates between ٨ rings around the compressor shaft
- Oil absorbs the gas on the inboard side 0
 - Little gas leaks through the oil seal 0
 - Seal oil degassing vents methane to the 0 atmosphere
- Wet seals leak little gas at the seal face

Source: PEMEX

- Most emissions are from seal oil degassing
- Seal oil degassing may vent 1.1 to 5.7 m³/minute
- One Natural Gas STAR Partner reported emissions as high as $2,124 \text{ m}^3/\text{day}$


Natural Ga

bb

Traditional Solution: Retrofitting/Installing Dry Seals

- Dry seals:
 - 0.8 to 5.1 m³/hour (0.01 to 0.08 m³/ minute) leak rate
 - Significantly less than the 1.1 to 5.7 m³/minute emissions from wet seals
- Very cost-effective option for new compressors
- Significant capital costs and downtime for retrofitting compressors
 - See Lessons Learned for more info
- Alternative exists for more cost-effective seal oil degassing and vapor recovery retrofit with less downtime

Dry seals keep gas from escaping while rotating with the shaft

Tandem dry seals

Background of North Slope Study

- Natural Gas STAR learned of anecdotal information on this potential mitigation opportunity a few years back
 - Developed a theoretical example and presented to Natural Gas STAR Partners at workshops and in the Spring 2009 Newsletter
- In taking measurements, BP discovered their wet seal recovery system on centrifugal compressors at its North Slope facilities
 - BP's initial results showed recovery of >99% of seal oil gas that would be otherwise vented to atmosphere from degassing tank
- Led to BP and Natural Gas STAR collaboration on detailed measurement study of alternative wet seal capture mitigation opportunity
 - Recovery system that separates gas from the sour seal oil before being sent to the degassing tank
 - Recovered gas sent to various outlets: flare, low pressure fuel, turbine fuel ~273 psig (18.6 Bar), compressor suction
 - System leads to lower emissions from degassing tank vent (more details on following slide)

Summary of North Slope Study

Purpose:

Evaluate methane emissions capture from sour seal oil vapor recovery systems on centrifugal compressors at the North Slope. Systems show evidence of reducing wet seal degassing emissions.

Goals:

A detailed evaluation and review of all sour seal oil recovery systems on the North Slope with:

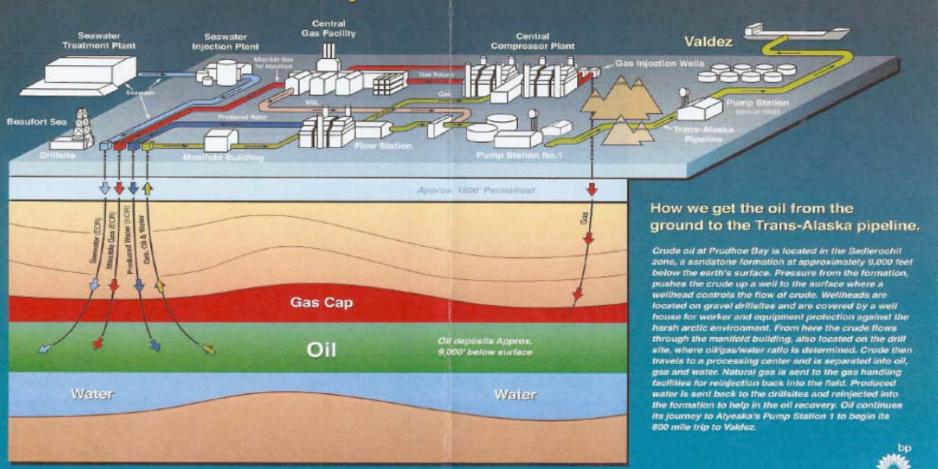
- Real-time measurement data from one facility (CCP)
- Engineering calculations from CGF and other facilities as applicable

Comprehensive characterization of wet seal degassing recovery system including process/operating requirements, applicability, limitations, emission reduction potential, costs, and economics.

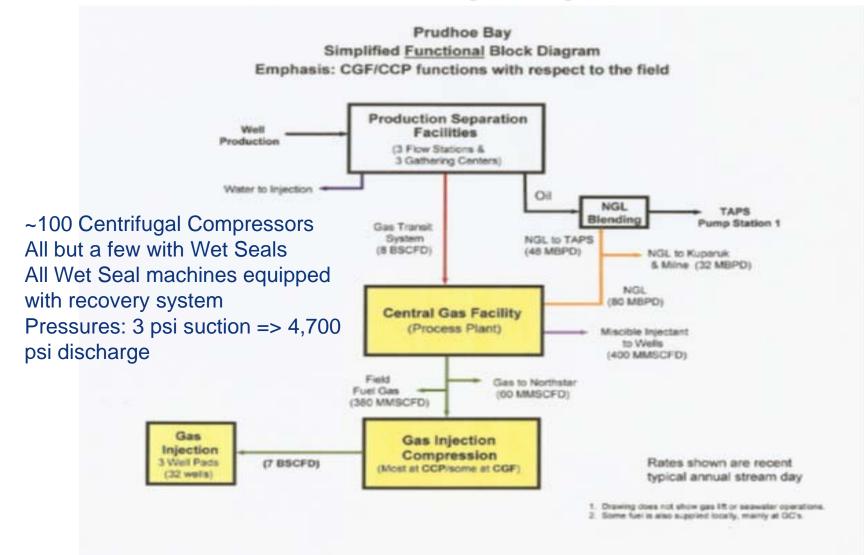
The Tools:

- In-depth understanding of compressor wet seal recovery system design and layout
- FLIR IR camera
- Vent anemometer
- P&IDs and operational data
- Complete readouts of compressor operating conditions and key parameters

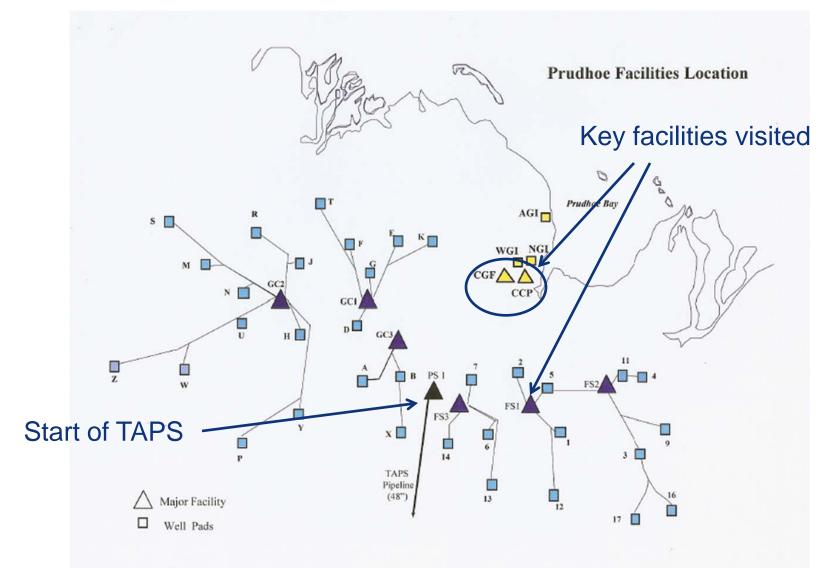
The Team:


- Natural Gas STAR
- BP local and global staff
- North Slope facility operators
- North Slope emissions measurement specialists

This presentation is focusing on preliminary results from Central Compressor Plant (CCP) only; final results will be available at a later date.


Overview of North Slope Operations

Prudhoe Bay

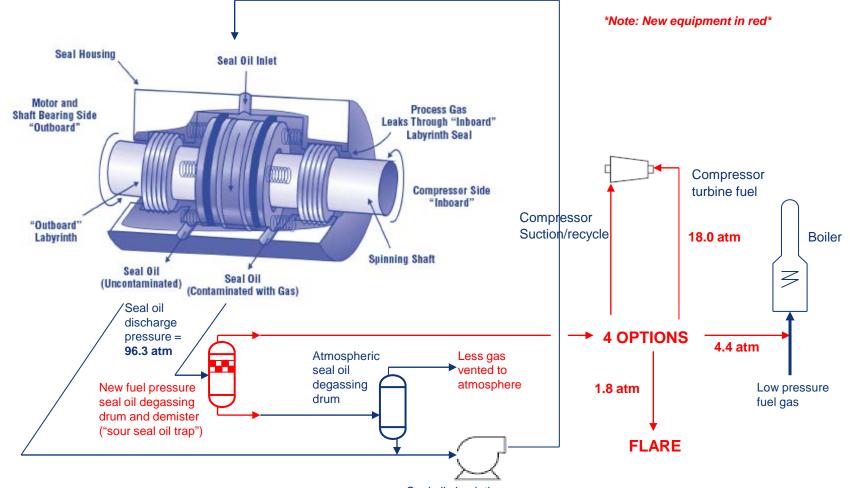

Overview of North Slope Operations

Prudhoe Bay process flow and volumes

Overview of North Slope Operations

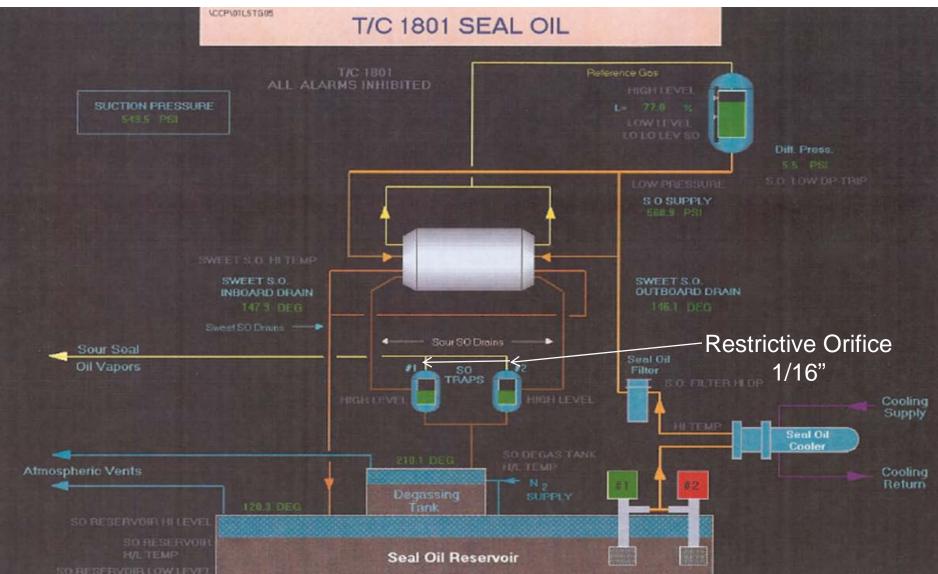
Central Gas Facility (CGF)

- World's largest gas processing plant (max feed of 246 MMcm/day)
- Processes all gas from Prudhoe Bay gathering & boosting stations (except local fuel)
- A Products:
 - A Residue gas
 - Natural gas liquids (blended with oil and delivered to TAPS)
 - Miscible injectant (used for EOR purposes)
- 11 compressors (totaling over 500,000 HP)
 - Three boosters
 - Two refrigerant
 - Two MI
 - Four tandems
- Seal oil vapor recovery lines sent to flare


Central Compressor Plant (CCP)

- World's largest compressor station (~238 MMcm/day capacity)
- Receives residue gas from CGF, compresses to higher pressures, and sends to gas injection wellpads (~200 MMcm/day at 3,600 to 4,000 psig)
- 15 compressors (totaling 537,000 HP)
 - Nine low pressure (1st stage) compressors in parallel
 - Four high pressure (2nd stage) compressors in parallel
 - Two tandem compressors (1st and 2nd stages) in parallel
- Seal oil vapor recovery lines sent to flare or fuel gas (for compressor turbines, heaters, and blanket gas)

Sour Seal Oil Vapor Recovery System



Seal oil circulation pump

Sour Seal Oil Vapor Recovery System: CCP

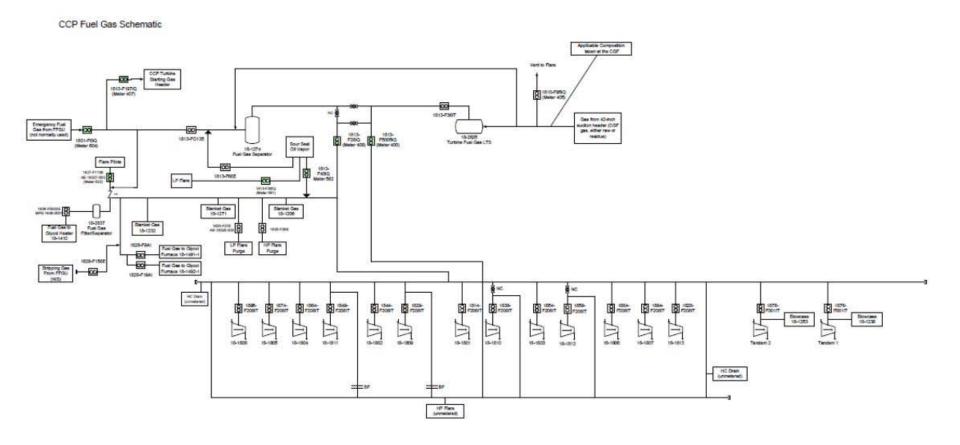
bp

NaturalGas

Seal Oil Degassing Separators

Seal Oil Degassing Separators

Seal Oil Degassing Separator/System


Seal Oil Degassing Separators

CCP Fuel Gas Layout

Early Results: BP Measurements of CCP

- Table shows initial measurements taken by BP from a low- and highpressure compressor at CCP <u>before</u> study
- Used nitrogen as "tracer gas" to calculate methane and total hydrocarbon flow-rates
- Recovered Gas: 0.92 MMSCFD LP; 3.7 MMSCFD HP Turbine Fuel

	High-Pressure Compressor	Low-Pressure Compressor
Nitrogen Purge Rate (SCF/Hr)	33	25
Vent Analysis (mole%)		
Nitrogen	43.846	86.734
Methane	37.872	6.93
Total Hydrocarbon + CO2	56.1540	13.2660
Total Methane Flow (SCFM)	0.4751	0.0333
Total Process Gas Flow (SCFM)	0.7044	0.0637
Number of Seals	2	2
Total Methane Flow (SCFM/Seal)	0.2375	0.0166
Total Process Gas Flow (SCFM/Seal)	0.3522	0.0319
"Average" Total Gas/Seal (SCFM)	108	108
Control Percentage	0.997	1.000

Preliminary Results: Velocity Measurements

- Table shows vane anemometer measurements taken prior to and during the study
- Full results of study are not yet final, but initial results from CCP measurements show generally consistent with BP's results from before the study

			CCP Veloci		s - During							
				# of Seals		1 Min	1 Min	1 Min	Vent			N2 Pur
Facilit	y Compressor Tag	Compressor description		per Tank	Vent size	Mean	Mean	Mean	Area ft2	fpm	scf/min	scf/m
					in	m/s	m/s	m/s				
CCP	K-18-1801	1st Stage Injection comp		2	2	0.36	0.38	0.28	0.022	66.9	1.5	
			Seal Oil Reservoir									
			Vent		4	0.35	0.34	0.37	0.087	69.5	6.1	
		2nd Stage Injection										
CCP	K-18-1809		Degassing Tank Vent	2	2	0.42	0.4	0.2	0.022	66.9	1.5	
			Seal Oil Reservoir									
			Vent		4	0.6	0.57	0.81	0.087	129.9	11.3	
	Velocity Readings - Prior to Study											
	K-E3-	Main A (1st, 2nd, 3rd										
END	1510/20/30A	stages)	Degassing Tank Vent	6	2	0.86	0.8	0.48	0.022	140.4	3.1	
	K-E3-											
END	1510/20/30A	second vent	Degassing Tank Vent	6	6	0.87	0.52	0.71	0.196	137.8	27.1	
											30.1	
	K-E3-	Main B (1st, 2nd, 3rd										
END	1510/20/30B		Degassing Tank Vent	6	2	3.84	3.5	3.15	0.022	688.1	15.0	
	K-E3-											
END	1510/20/30B	second vent	Degassing Tank Vent	6	6	2.68	2.14	4.67	0.196	622.5	122.3	
											137.3	
	1	Booster B (1st & 2nd							1			
END	C-1501/02B		Degassing Tank Vent	2	2	0.64	0.42	0.67	0.022	113.5	2.5	
END	C-1501/02B		Degassing Tank Vent	2	2	0.54	0.39	0.46	0.021825	91.2	2.0	
	0 100 1/020		Degadoing runk vent		2	0.04	0.00	0.40	0.021020	01.2	4.5	
											4.5	
LPC	K-52-1807	Reinjection Compressors	Degassing Tank Vent	2	2	0.82	0.91	0.83	0.022	167.9	3.7	
	K-52-1808	Reinjection Compressors		2	2	1.44	1.73	1.6	0.022	312.9	6.8	
	K-42-1801		Degassing Tank Vent	2	2	0.82	0.93	1.06	0.022	184.3	4.0	
	K-42-1801		Degassing Tank Vent	2	4	0.82	0.93	0.52	0.022	135.1	11.8	
LFC	K-42-1001	Second vent	Degassing rank vent		4	0.90	0.56	0.52	0.067	155.1	15.8	
											15.8	
0.0.0	14.40.4004	1	D : T) (/				0.00	0.00	0.000			_
CCP	K-18-1801		Degassing Tank Vent	2	2	0.3	0.33	0.32	0.022	62.3	1.4	
CCP	K-18-1802		Degassing Tank Vent	2	2	0.54	0.56	0.45	0.022	101.7	2.2	
CCP	K-18-1803		Degassing Tank Vent	2	2	0.45	0.15	0.19	0.022	51.8	1.1	
CCP	K-18-1804		Degassing Tank Vent	2	2	0.05	0.17	0.06	0.022	18.4	0.4	
CCP	K-18-1805	1st Stage Injection comp		2	2	2.65	2.67	2.52	0.022	514.3	11.2	
CCP	K-18-1806		Degassing Tank Vent	2	2	0.38	0.74	0.56	0.022	110.2	2.4	
CCP	K-18-1807		Degassing Tank Vent	2	2	0	0.04	0.22	0.022	17.1	0.4	
CCP	K-18-1808		Degassing Tank Vent	2	2	0.2	0.09	0.09	0.022	24.9	0.5	
CCP	K-18-1813		Degassing Tank Vent	2	2	0.54	0.64	0.65	0.022	120.0	2.6	
		2nd Stage Injection										
CCP	K-18-1809	comp	Degassing Tank Vent	2	2	0.54	0.42	0.29	0.022	82.0	1.8	
		2nd Stage Injection										
ССР	K-18-1810		Degassing Tank Vent	2	2	1.17	0.46	0.34	0.022	129.2	2.8	
		2nd Stage Injection										
ССР	K-18-1811		Degassing Tank Vent	2	2	1.44	1.38	0.59	0.022	223.7	4.9	
		2nd Stage Injection										
ССР	K-18-1812		Degassing Tank Vent	2	2	0.38	0.43	0.4	0.022	79.4	1.7	
CGF	K-19-1802A/B	Booster #2	Degassing Tank Vent	2	3	0.26	0.31	0.93	0.049	98.4	4.8	
CGF	K-19-1802A/B		Degassing Tank Vent	_	3	0.36	0.25	0.82	0.049	93.8	4.6	
			- sgassing rain vont			0.00	0.20	0.02	0.040	00.0	9.4	
CGF	K-19-1805	MI Compressor	Degassing Tank Vent	2	2	0.49	0.4	0.38	0.022	83.3	1.8	
CGF	K-19-1805	Second vent	Degassing Tank Vent	~	2	9.98	9.55	9.77	0.022	1922.1	42.0	
001	10-10-1000		Dogassing Lank Velil		2	0.00	0.00	5.11	0.022	1022.1	42.0	
					1				1		43.0	

bp

NaturalGas

Close-up

bp

Natural Gas

Applicability/Benefits to Oil and Gas Companies

- Based on the results of this study, this sour seal oil vapor recovery system could prove to be an economic alternative to dry seal retrofits on centrifugal compressors
 - Ory seals on new compressors are now more prevalent in industry—typically cheaper than wet seals
 - Dry seal retrofits on older compressors are still very high in cost;
 ~\$250,000 to \$1 million per compressor
 - Sour seal oil vapor recovery system on wet seals compressors much lower in capital cost, requires short-duration compressor shutdown or interruption in gas service
- Project characterization could provide companies with a way to both reduce methane emissions and utilize recovered gas <u>cost-effectively</u>

Applicability/Benefits

Investment includes cost of:

- Intermediate degassing drum ("sour seal oil trap")
- New piping
- Gas demister/filter
- Pressure regulator for fuel gas line

Project summary:

- Less expensive capital costs compared to dry seals
- Prevents most seal oil gas emissions from venting to atmosphere while also improving site efficiency
- Positive cash flow after less than a month

PROJECT SUMMARY: CAPTURE AND USE OF SEAL OIL DEGASSING EMISSIONS

Operating Requirements	 Centrifugal compressor with seal oil system 					
	 Nearby use for low pressure fuel gas 					
	 New intermediate pressure flash drum, fuel filter, pressure regulator 					
Capital & Installation Costs	\$22,000 ¹					
Annual Labor & Maintenance Costs	Minimal					
Methane saved	1.8 million m ³					
Gas Price per Mcm	\$105	\$175	\$250			
Value of Gas Saved	\$189,000	\$315,000	\$450,000			
Payback Period in Months	1.4	0.8	0.6			

¹Assuming a typical seal oil flow rate of 14.20 liters/minute (3.75 gallons/minute)

Conclusions and Next Steps

- Preliminary results are promising and indicate that sour seal oil vapor recovery from centrifugal compressors can be a viable project option for companies
- BP and Natural Gas STAR currently analyzing data obtained during study
- BP and Natural Gas STAR will continue to collaborate on this study to fully characterize the seal oil vapor recovery system seen on the North Slope
- Team to publish more detailed results of study in a future article

Contact Information

For further details, direct questions to:

Suzie Waltzer EPA Natural Gas STAR Program waltzer.suzanne@epa.gov

+1 (202) 343-9544

Reid Smith BP <u>gordon-reid.smith@bp.com</u> +1 (281) 384-3583

Don Robinson ICF International <u>drobinson@icfi.com</u> +1 (703) 218-2512