

Petroleos Mexicanos Report

Oil and Gas Subcommittee Meeting

Krakow, Poland, October 2011

- Introduction
 - Mitigation of methane fugitive emissions
 - Measurement campaigns
 - Methane emissions inventory
 - Methane Abatement Cost Analysis (MAC)
- Next steps

Pemex is the oil and gas State owned company of Mexico, the main corporation of the country and one of the world's largest fossil hydrocarbons firms.

Pemex 's main infrastructure, 2010

- •The Global Methane Initiative (GMI) is a significant framework for international cooperation to reduce methane emissions to increase energy security, enhance economic growth, improve air quality, get better industrial safety and reduce emissions
- •On behalf of the Mexican Government, since 2005 Pemex has been co-chair of the GMI Oil and Gas Industry Subcommittee, which is responsible for guiding the oil and gas sector activities and engaging all representatives of the private, public and non-governmental parties in those activities. The O&G Subcommittee's main concerns are:
 - Identify methane recovery opportunities and describe available technologies and best practices
 - ✓ Identify key barriers and issues for project development
 - ✓ Discuss country-specific needs, opportunities and priorities
 - ✓ Identify possible joint activities to increase methane recovery and use in the sector
 - ✓ Identify project finance opportunities and mechanisms

Introduction GMI and Pemex

- •The joint efforts of GMI and Pemex produced a number of results, mainly in the following aspects:
 - Identification of methane reduction opportunities in several Pemex's facilities.
 - First Pemex CH₄ inventory,
 - Marginal Abatement Cost model (MAC)
 - Technical workshops
- •During the last year, besides the works executed in the gas processing area, an action program has been developed in exploration and production
- •To sustain these efforts in the long term, the methane recovery issue has been introduced in the Pemex's business plan

- The reduction of methane emissions during the period 2004-2010 is the result of the projects implemented by PEP to increase the utilization of natural gas, mainly in the Cantarell complex
- •To reduce CH₄ emissions from hydrocarbons flaring, Pemex has become a member of the World Bank's Global Gas Flaring Reduction partnership (GGFR)
- •There are important synergies among Pemex, GMI and GGFR to reduce methane emissions and other SLFC in flaring systems

Measurement of methane emissions

In recent years, PEMEX has completed a number of activities on methane emissions reduction projects in several facilities, improving gas recovery and reducing emissions.

Exploration and production

South Region

- Gas compression: Cunduacán and José Colomo
- Production fields: Chilapilla and Jose Colomo
- Gas collection: San Roman
- Separation battery: Vernet
- Maritime terminal: Dos Bocas.
- Separation battery and gas compression: Ogarrio 4 and Cinco Presidentes 4 and Samaria II

North Region

• **Production field**: Nejo 1, Activo Integral Burgos

Northeast Maritime Region

• Gas compression: Atasta

Southwest Maritime Region

Production complex: Abkatun – D

Methane to Markets

•At the end of each measurement campaign, a valuable technical report is produced and delivered to Pemex

It includes the main findings, a technical and economic analysis and the recommended actions to reduce CH4 emissions, to improve gas utilization and to increase the efficiency of the operations in the

facility

REPORTE TÉCNICO

Oportunidades de Reducción de Emisiones de GEI y de Eficiencia Energética en la Estación de Compresión Cunduacán

Octubre 2009

Este informe ha sido preparado por Clearstone Engineering Ltd., y PA Government Services Inc., Arlington, VA, subsidiaria de PA Consulting Group (www.paconsulting.com), bajo contrato con Eastern Research Group (ERG), financiado por el programa Metano a Mercados (M2M) de la Agencia para la Protección Ambiental de los Estados Unidos (USEPA).

Preparado para:	PETRÓLEOS MEXICANOS	PETRÓLEOS MEXICANOS México Contacto: Ing. Javier Bocanegra R. Tel: (55) 1944-9071 E-mail: <u>jbocanegra@pemex.gob.mx</u>
Preparado por:	CLEARSTONE ENGINEERING LTD.	CLEARSTONE ENGINEERING LTD. 700, 900-6 Avenue S.W. Calgary, Alberta Contacto: David Picard Tel: 1 (403) 215-2730 E-mail: <u>dave.picard@clearstone.ca</u>
	PA CONSULTING GROUP	PA CONSULTING GROUP 4601 N. Fairfax Dr., Ste 600 Arlington, VA 22203 Contacto: Mark Oven Tel: 1 (571) 227-9000 E-mail: mark oven@baccossultion.com

Potential methane reduction in **exploration and production**, according to GMI studies and 2009 Pemex methane inventory

	Avoidable Methane Emissions						
Source	(10 ³ m ³ /y)	(tCH₄/y)	(tCO2e/y)				
Fugitive emissions in equipment and venting of pneumatic devices	34,396	24,655	517,759				
Gas Flashing and venting tanks of crude and condensed without VRU's	25,058	17,961	377,191				
Venting in seals of centrifuge compressors	3,488	2,500	52,500				
Total E&P	62,942	45,117	947,449				

Main findings of GMI Technical reports. As of June, 2011

Potential methane reduction in **gas processing**, according to GMI studies and 2009 Pemex methane inventory

	Avoidable Methane Emissions						
Source	(10 ³ m ³ /y)	(tCH₄/y)	(tCO2e/y)				
Fugitive emissions in equipment and venting of pneumatic devices	3,301	2,366	49,682				
Venting in seals of centrifuge compressors	20,694	14,833	311,500				
Total Gas processing	23,994	17,199	361,182				

Total potential methane reduction in **hydrocarbons exploration and production and gas processing**, according to GMI studies and 2009 Pemex methane inventory

	Avoidable Methane Emissions						
Source	(10 ³ m ³ /y)	(tCH₄/y)	(tCO₂e/y)				
E&P	62,942	45,117	947,449				
Gas processing	23,994	17,199	361,182				
TOTAL	86,936	62,316	1,308,631				

Measurement of methane emissions

2. PEMEX—GMI Methane Inventory

PEMEX and GMI have undertaken a detailed inventory of PEMEX methane emissions and their mitigation potential (based on 2008 data).

Objectives:

- Prepare a comprehensive baseline CH₄ emissions inventory
- Estimate abatement potential that is technologically feasible
- Quantify the costs and benefits of achieving incremental reductions
- Provide a basis for PEMEX to set targets for methane emission reductions as part of its climate strategy

Results:

- PEMEX baseline CH₄ emissions inventory: Aprox. 36.1 MtCO₂e/year
- Estimate of savings from cost-effective CH₄ reductions: UD\$ 18 @4.0 USDIs/MMBTU
- Full analysis of 16 mitigation actions
- Technical and economic model of PEMEX methane emissions and reduction projects

- Exploration and production is responsible for 96% of total emissions
- Methane from incomplete burning in flares is the largest single source, accounting for 78% of total emissions.

PEMEX Subsidiary	Annual Emissions (tCH4)	Annual Emissions (MtCO2)	% of Baseline Emissions		
PEP	1,654,798	34.75	96.3%		
Flaring System	1,350,085	28.35	78.6%		
PGPB	60,772	1.28	3.5%		
Gas Transmission	30,421	0.64	1.8%		
PREF	2,826	0.06	0.16%		
PPQ	211	0.00	0.01%		
Total Annual CH4 Emissions	1,718,607	36.09	100%		

Measurement of methane emissions

The results will allow to identify the cost-effective methane emissions reductions measures for PEMEX to implement

Methane abatement cost analysis model

P	В	С	D E	E F	G	Н		JK	L	M	N	0	Р
1	N-OUT												
2	Click to Run MAC Mo	odel											
3													
4	Adjust model inputs in the User Defined column, values in CREEN												
5	August moder inputs in the over Defined coldinii - values in GREEN												
6	Then click Run MAC Model button above to update results in the summary tables.												
	f												
• •				Summary K	Emission	Z of	Z of	summary of rop so - most cost Enecti	ve options		Ava	Ava (IBB1	
	MAC Model Inputs	Model	User	Break Even	Reduction	Baseline	Baseline		Avg. Break	Incremental Reduction	Payback	Internal	
	MAC MODEL INPUCS	Yalues	Yalues	(\$/tCOze)	5	(wło	(with	Abatement Measure	(\$/tCO2e)	(MtCO2e)	Period	Bate of	
9	Varia of Emission a lauration	2000	2000	4E		Flaringj	Flaringj	Current a sector (secondaria succeita s	47.44	0.04	[Months]	Heturn [2]	
10	Aug. Energy Intensity (htu/(t ³)	2008	2008	-\$5	1.18	14%	3%	Surge vessels for station venting	-\$7.44	0.04	5.9	210%	
12	CH. Densita (ka/m³)	0.7168	0.7168	\$5	2.08	25%	5%	Dl&M - Processing plants	-\$5.59	0.01	5.2	206%	
13	GVP of CH ₄ (100yrtimeharizan)	21	21	\$10	2.67	33%	7%	Reducing the glycol circulation rates in dehydrators	-\$5.48	0.02	3.3	#DIV/0!	
14	Finance Parameters			\$15	2.70	33%	7%	Replace High-bleed pneumatic devices	-\$4.19	0.48	28.4	77%	
15	Gas Price (2008\$USD / Mcf of natu	\$5.83	\$5.83	\$20	2.87	35%	8%	Installing Vapor Recovery Units on Crude Oil Storag	-\$2.32	1.09	28.9	45%	
16	Real Discount Rate (Required %IRR	12%	12%	\$25	2.98	36%	8%	DI&M - Compressor Stations	-\$0.69	0.03	5.6	565%	
17	Taz Rate	45%	45%	\$30	2.98	37%	8%	Installation of Flash Tank Separators	-\$0.11	0.03	63.1	12%	
18	Summary of Emissions Inventory	by Segment		\$35	2.99	37%	8%	Convert Gas Pneumatic Controls to Instrument Air	\$1.34	0.02	13.5	-15%	
20	Oil and Gas Segment	(ICH.)	(MtCOve)	\$45	3.01	37%	8%	"See MACA sheet for individual results	-	1.71	-		
21	Production (Oil and Gas)	1.677.144	35.22	\$50	3.02	37%	8%	See Pinon Siece for Individual results.					
22	Flaring System	1,350,085	28.35	>\$60	3.50	43%	10%						
23	Processing (Gas)	30,351	0.64										
24	Transmission (Gas)	28,176	0.59			PEMEX Marg	ginal Abatem	ent Cost Curve (Current Gas Price - red li	ine)				
25	Refining (Oil)	2,826	0.06										
26	Petrochemical (Oil)	211	0.00				Reductions	as Percent of Baseline (w/o flaring)					
27	Annual Emissions	1,738,708	36.51		0%	20%		40% 60% 80%		100%			
28	Emissions Baseline with No Pedu	ctions (MtC)		S	50 +					-			
30	Emissions Baseline (without Elaring		8 16										
31	Emissions Baseline (with Flaring)	· I	36.51							- \$108			
32				S	40					_			
33	Disclaimer -						[+ S90			
35	The PEMEX MAC model is an analytical too	ol developed by l	J.S. EPA's										
36	model is intended for internal use by PEMES	os Mexicanos (Pi X for planning pui	EMEXJ. The	S	30					_ \$72 ⁰			
37		i i oi più inig pa	poses oring.	je ((j, j	~		
39	The Emissions Inventory provides a cro	oss-sectional sn	apshot of	54						8	2		
40	of mitigation measures may effect the basel	or infrastructure a line emissions es	and adoption	္က နည္ န	20		لے			- \$ 54 업	ž i		
41	future years.			H # ₩			- 7			je,	2		
43				l ğ						-\$36 ਛੋਂ	~		
44	The MACA sheet provides detailed results (or the MAC anal	ysis.	\$	10					<u>~</u>			
40	-						ے کمپنے			- \$18			
47						<u>ح</u>	<i>,</i>						
48					\$0	- 7							
49										- 30			
51													
52				-\$	10 +	-		1 1 1	-	- \$ 18			
54					0.0	1.0	2.0 3.	0 4.0 5.0 6.0	7.0 8	3.0			
55		Cumulartive Emission Reductions											
56	(MtCO2e)												
58													
14 4	INTRO INTRO IN-OUT	CR / FTSD / F	GR / CRPS	DSCC / IMPP	/ IMTS / T	ROT / GPCA		T / Additional Factors / Cost Output / M	ACA / Top50)/		•	

INTRO INTRO IN-OUT / IMTS / TROT / GPCA / RHBP / VRUT / Additional Factors / Cost_Output / MACA / Top50 EINV / RECR / FTSD / FGR / CRPS / DSCC / IMPP

•

Estimation of Methane emissions mitigation. Gas processing

- The E&P up-coming methane workshop and measurement actions (November 2011)
- To define the Pemex-GMI action program for 2012
- Review and complete methane emissions inventory
- Integrate CH₄ baseline and MAC analysis in the design of the Pemex´s operations
- Identify measures to reduce flaring and methane emissions from incomplete burning
- Implement operational working plans to reduce emissions of CH₄, other pollutants and GHG in Pemex's facilities.
- Acquisition of methane measurement equipment

Thank you!!!

