Lesson 2b: Modeling Landfill Biogas Generation
Gas Models

- Why model Landfill Biogas
 - Preliminary estimate of methane and energy production
 - Estimate of environmental emissions
 - Initial project capacity and costs
 - Provide a benchmark for project performance

- What a model does not do
 - Guarantee the amount of biogas
 - Guarantee that you can collect all the biogas
The familiar equation

Basic Gas model;
Annual Gas Production = \(L_0 \cdot M \cdot (1 - e^{-k}) \)

where:
- \(k \) = reaction rate constant \((\text{Ln}(2)/t_{1/2})\)
- \(L_0 \) = methane generation potential \((\text{m}^3/\text{tonne})\)
- \(M \) = mass of degradable waste available
Exploring the variable - \(L_0 \)

- **Example**
 - Perfectly degradable organic substrate
 - Perfect digester
 - Ideal conditions

- \(L_0 = \) around 600m\(^3\) / tonne Biogas
- Complete degradation in 3 months
Exploring the variable - L_0

- But waste is not 100% degradable
- L_0 maybe 300 m3/tonne

Landfill Biogas Seminar
Almaty, Kazakhstan
18 September 2009
Exploring the variable - L_0

- But not all the organic material degrades
 - Particle size too big
- Acid conditions
 - Isolated from bacteria
 - Chemical inhibitors
- Perhaps L_0 should be 150m3/tonne
Exploring the variable - k

- In a perfect digester, k is very high.
- In our example, a half-life of 3 months.
Exploring the variable - k

- In a perfect digester k is very high.
- In our example a half life of 3 months
- Landfill is NOT a perfect biodigester
- Perhaps half life = 1 year
Exploring the variable - k

- BUT – all waste is not easily degraded
- Perhaps degradable waste is;
 - 10% Oils, fats & sugars – Rapid (Half life = 1 year?)
 - 10% Proteins, carbohydrates, starches – Moderate (Half life = 2 years?)
 - 30% Paper & Card, green waste – Slow (Half life = 10 years?)
 - 50% Others – very slow (Half Life = 50 years?)

Landfill Biogas Seminar
Almaty, Kazakhstan
18 September 2009
Exploring the variable - k

- But our 1,000 tonnes was deposited over 1 year!
- Maybe we should allow 6 months to reach full gas production
Are the numbers right?

- Perhaps the Mass is +-10%
Are the numbers right?

- Perhaps the Mass is +-10%?
- Perhaps the L_0 is +-10%?
Are the numbers right?

- Perhaps the Mass is +/-10%?
- Perhaps the \(L_0 \) is +/-10%?
- Perhaps the \(k \) is +/-10%
Are the variables right?

- Perhaps the mass is +-10%?
- Perhaps the L_0 is +-10%?
- Perhaps the k is +-10%
- Using reasonable assumptions throughout
- With a small error there is almost 100% difference in peak production
Other Waste Considerations

- Is there enough moisture in the waste?
 - Rainfall
 - Capping layer quality

- What is the waste temperature
 - Methanogenic bacteria need heat
Is there something missing?

- Our model indicates the possible baseline
- But we have not yet visited the site!
- So what factors should we look at on the site?
Gas Recovery

Basic IPCC Gas model;
Annual Gas Production = $L_0 \cdot M \cdot (1 - e^{-k})$

Needs a collection efficiency factor;
Annual Gas Recovered = $\eta \cdot L_0 \cdot M \cdot (1 - e^{-k})$
Collection Efficiency

\[\eta \]

A small factor with a BIG impact

Landfill Biogas Seminar
Almaty, Kazakhstan
18 September 2009
Is the site full of leachate?
Is the site full of leachate?

- High leachate levels affect the Radius of Influence (ROI) of extraction
- If ROI is estimated at 20m
- A 5% error reduces collection area by 10.7%

Landfill Biogas Seminar
Almaty, Kazakhstan
18 September 2009
How long is the waste exposed?
Are the gradients too steep?

Landfill Biogas Seminar
Almaty, Kazakhstan
18 September 2009
Or is the site too shallow?
Are there site operations?
And other factors?

- Air leakage
 - Is the applied vacuum limited by oxygen ingress
- Are all the gas wells performing normally

- APOLOGIES – I know the following slide is hard to read.
Field Measurements
Other issues

- Volume correction for altitude and temperature
 - Are the gas pumps correctly rated?
 - Are flow meters corrected?

- Condensate drainage
 - Flow restrictions can occur

- Pressure drop in pipe work
 - Is there enough suction on the site
Are we collecting all the gas?

\[\eta \] – Collection Efficiency can’t be modelled

- Reasonable assumptions are needed
- Adjustment based on history is required
Rio Azul Gas Model

Rio Azul Landfill, 6.8 Million Tonnes
70% Collection, 80% Domestic, Wet.
Simeprodeso Gas Model

SIMEPRODESO
70% collection efficiency
Filled from 1991 to 1999
Total 7,698,057 T
Gas Models - Summary

- May not adequately assess;
 - Site Conditions
 - Site Operations
 - Contractual terms

- Do not replace gas pumping trials

- Modelling requires actual and detailed knowledge of the site

- Take 50 gas models
 - On average they may be more or less correct.
 - !Any individual may be an order of magnitude wrong!

Landfill Biogas Seminar
Almaty, Kazakhstan
18 September 2009
Gas Models - Summary

- In Practice;
 - Gas Models can be quite good
 - Require to have detailed knowledge of the landfill
 - Waste
 - Engineering
 - Management
 - Environment

- CDM landfill gas projects are measured ‘ex-post’
- Often ‘what you get is what you get’ – and with experience that is usually pretty good!