Methane to Markets

Mexico Landfill Gas Model – Version 2 (2009)

Landfill Subcommittee Meeting Monterrey, Mexico January 28, 2009

Why an LFG Model for Mexico?

- Methane generation and recovery estimates for LFG projects
 - Screening tool for project development
 - Basis for assessing project feasibility
- Other models currently available
 - U.S. EPA Landfill Gas Emissions Model (LandGEM)
 - Old (2003) LFG Mexico Model
 - Intergovernmental Panel on Climate Change (IPCC) Model (2006)

LFG and Methane Generation and Recovery

- LFG generation from anaerobic waste decay is a function of:
 - Waste disposal rates
 - Waste composition (% of dry organics)
 - Moisture (precipitation)
 - Limits to landfill depth, waste compaction, extent of soil cover
- LFG recovery is determined by LFG generation and "collection efficiency" – function of:
 - Collection system design
 - Collection system operation and maintenance
 - Landfill configuration and operations

U.S. EPA LANDGEM

- First-order decay model LFG generation is calculated using the following variables:
 - Waste disposal rates M_i (Mg/year)
 - Methane generation potential L_0 (m³/Mg)
 - Methane generation rate k (1/year)

LandGEM shortcomings:

- Model assumes USA waste composition
 - Mexico waste composition is different higher food waste %
 - No guidance for L₀ and k adjustments in LandGEM
- Model provides only "wet" and "dry" k values
 - Waste decay rates vary more continuously with precipitation
- Model structure (single L_0 and k values that do not change over time)

Mexico LFG Model 2003

First introduced in December 2003

- Model and user manual released in a workshop
- User's manual provided on how to run model and estimate collection efficiency

Model uses LandGEM structure modified for Mexico

- Waste composition data from 31 cities
 - Average waste composition calculated for Mexico
 - Model Lo values developed based on ratio of dry organics (average Mexico vs. U.S.)
- LFG recovery data from SIMEPRODESO LFG project used to develop model k value for Monterrey (~600 mm/yr rain)
- Variation of model k with rainfall estimated based on U.S. experience

Mexico LFG Model 2003 Shortcomings

- Model assumes average waste composition for all of Mexico
- Model applies a single-k LandGEM equation:
 - Effects of high food waste % not accounted for
 - Single-k model structure tends to:
 - Over-estimate LFG generation in wet climates
 - Under-estimate LFG generation in dry climates
- Model default k values based on limited site data
- Model uses outdated version of LandGEM
- Model does not include projection of CERs

IPCC Model (2006)

- First order decay model
- Uses 4 waste categories,
- Uses 4 climate categories
- PDDs for CDM projects require application of a multi-phase first order decay model with variables found in the IPCC model
- Includes a methane correction factor (MCF)
- Includes a calculation of oxidation

IPCC Model Shortcomings

Model not designed specifically for Mexico

- Uses default waste composition for all of Mexico based on limited data
- No guidance on regional effects of climate
- 4 climate categories, but only 2 precipitation regimes
 - Wet vs. dry cutoff is 1000 mm/yr
 - 2 precipitation regimes too coarse to capture effects on k values
 - Temperature not likely to have significant effects
- Ratio of waste decay rates for food vs. wood too low
 - Ratio only about 3 to 1 in dry climates

Approach to Development of the New Mexico Model

- Build on the old Mexico Model
 - Waste composition data covers 40 cities (vs. 31 cities in 2003)

Make the model very country-specific

- Evaluate climates in all regions
- Group states into climate regions
- Develop default waste composition and model values for each state & D.F.

Adopt IPCC Model structure with modifications

- Use 4 k values to account for decay rates of different waste fractions
- Modify IPCC k values to better fit Mexico conditions
- Evaluate data from sites with operating LFG systems
 - Site visits to 3 landfills with LFG projects
 - Develop models for 4 landfills with projects to guide default k selections

MEXICO'S CLIMATE REGIONS

NORTHWEST & INTERIOR NORTH: Very Dry, Moderately Warm Climate

NORTHEAST REGION: Moderately Dry, Very Warm Climate

- AVERAGE ANNUAL PRECIPITATION: 613 mm/yr*
- MEAN ANNUAL TEMPERATURE: 22.3°C*
- TOTAL POPULATION (2005): 6,482,890
- WASTE DATA FROM 8 CITIES AND TOWNS

*Data weighted by population

Note: Tampico area in southeastern Tamaulipas is moved into the very wet, hot Southeast Region

 AVERAGE ANNUAL PRECIPITATION: 664 mm/yr*

Methane to Markets

- MEAN ANNUAL TEMPERATURE: 16.6°C*
- TOTAL POPULATION (2005): 30,901,720
- WASTE DATA FROM 6 CITIES AND TOWNS

*Data weighted by population

FEDERAL DISTRICT: Moderately Dry, Temperate Climate

D.F.

- AVERAGE ANNUAL PRECIPITATION: 635 mm/yr
- MEAN ANNUAL TEMPERATURE: 16.6°C
- TOTAL POPULATION (2005): 8,720,916
- WASTE DATA FROM 3 LANDFILLS

WEST REGION: Moderately Wet, Warm Climate

Average Waste Composition

	Northwest & Interior		Federal	Central/		10 / 4
waste Category	Νοπη	Northeast	District	Interior	Southeast	vvest
Food	30.7%	36.1%	12.2%	35.3%	30.6%	25.7%
Paper	16.3%	11.7%	14.8%	15.8%	12.8%	11.2%
Garden waste	9.9%	9.1%	9.1%	13.7%	18.2%	27.4%
Wooden waste	1.1%	1.7%	3.3%	0.5%	2.9%	0.9%
Rubber, leather, straw	1.2%	2.8%	2.1%	2.5%	3.3%	0.7%
Textiles	5.4%	3.6%	5.6%	1.2%	2.0%	0.9%
Toilet paper	No data	1.5%	3.2%	No data	No data	No data
Diapers	6.4%	No data	5.1%	3.1%	1.3%	3.5%
Other organics	1.9%	5.1%	0.2%	3.7%	5.0%	0.9%
Inorganics	26.9%	28.3%	44.4%	24.3%	23.8%	28.7%
Total	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%

Merida Site Visit

Merida Landfill Data

- Landfill owned by the City of Merida; operated by Setasa
- Years of operation: Nov. 1997 early 2010
- Site capacity: 2,595,000 tonnes
- Waste in place: 2,329,200 tonnes (end of 2008)
- LFG recovery project operated by ProActiva
- Average 2008 LFG recovery (July-Oct): 213 nm³/hr @ 31% CH₄ (=131 m³/hr @ 50% CH₄)
- Cells 1-4 with extraction wells installed
 - Cells 1-4 received ~1.04 million Mg (1997-early 2003)
 - Estimated collection efficiency: <30%

Aguascalientes Site Visit

San Nicolas Landfill Data (Active Aguascalientes Site)

- Landfill owned and operated by the City of Aguascalientes
- Years of operation: 1999 2010
- Site capacity: 3,780,600 tonnes
- Waste in place: 3,253,700 tonnes (end of 2008)
- LFG recovery project operated by EcoMethane
- Average 2008 LFG recovery (Jan-Aug): 896 nm³/hr adjusted to 50% CH₄ (based on 5,222,572 tCO₂e CERs Monitoring Report)
- Cells 1-3 with extraction wells installed
 - Cells 1-3 received waste 1999 2006
 - Estimated collection efficiency: ~50%

Cuidad Juarez Site Visit

Cuidad Juarez Landfill Data

- Landfill owned by the City of Juarez; operated by PASA
- Years of operation: 1998 2010
- Site capacity: 5,587,600 tonnes
- Waste in place: 4,666,400 tonnes (end of 2008)
- LFG recovery project operated by Biogas de Juarez, S.A. de C.V.
- Average 2008 LFG recovery (Jan-Sept.): 1,117
 nm³/hr @ 40% CH₄ (=899 m³/hr @ 50% CH₄)
- Cell 1 with extraction wells installed
 - Cell 1 received ~2.25 million Mg
 - Estimated collection efficiency: ~65%

Simeprodeso Landfill (Monterrey) Data

- No site visit performed
- Landfill owned and operated by SIMEPRODESO a State of Nuevo Leon entity;
- LFG recovery project operated by Bioenergia de Nuevo Leon, S.A. de C.V.
- Average 2008 LFG recovery: 6,179 nm³/hr adjusted to 50% CH₄
- Cells 1 and 2 with extraction wells installed
 - Cells 1&2 received ~13.6 million Mg (1991 ~2003)

Merida Landfill LFG Model

Aguascalientes (San Nicolas Landfill) LFG Model

Cuidad Juarez LFG Model

Simeprodeso Landfill LFG Model

LMOP MEXICO MODEL WORKSHOP

- Workshop planned for March
- Location of workshop to be determined
- Model, training on model use, and users manual to be provided at workshop
 - Review of model development
 - Procedure for preparing inputs, producing estimates
 - Practice model runs
- Model to be available on LMOP and M2M websites

FOR MORE INFORMATION:

- Jose Luis Davila
 - SCS Engineers (602) 840-2596
 - jdavila@scsengineers.com
- Alex Stege
 - SCS Engineers (602) 840-2596
 - astege@scsengineers.com
- Victoria Ludwig
 - Victoria.Ludwig@epamail.epa.gov
- LMOP website: <u>www.epa.gov/lmop/index.htm</u>
- M2M website: <u>www.methanetomarkets.org</u>