Methane to Markets

China Landfill Gas Model

Version 1.1

Bryce Lloyd Organic Waste Technologies (Hong Kong) Limited

Prepared for:

Methane to Markets, and the

U.S. Environmental Protection Agency - Landfill Methane Outreach Program (LMOP)

Prepared by:

Eastern Research Group, Inc., and Organic Waste Technologies (Hong Kong) Ltd.

LFG Modeling – Science vs. Art

Recent CDM Experience – over-estimation vs. under-delivery

Purpose - provide landfill owners, operators, and developers with a realistic tool to evaluate the feasibility and potential benefits of recovering and utilizing LFG for production of energy for various potential end uses

- Estimates potential LFG generation and recovery potential for existing or future municipal solid waste (MSW) landfills in China
- Estimates available emission reductions
- Provides estimates of energy output from either a direct use project or an electrical power generation project

- Excel® spreadsheet model
 - Based on USEPA LandGEM
- Based on a first order decay rate equation
- Requires the user to input site-specific data for
 - landfill location (in terms of geographical climate zones)
 - approximate coal ash content of the waste
 - history of landfill fires
 - a number of landfill characteristics that determine collection efficiency

- Based on the user's input for geographical location (climate considerations), and waste composition data specific to various regions of China, the model calculates recommended values for the following parameters:
 - k – L_o

- Requires the user to input site-specific data for:
 - geographic location
 - landfill opening and closing years
 - refuse disposal rates
 - estimated collection efficiency and area coverage of the LFG collection system
 - coal ash
 - fires

- The model estimates LFG generation and recovery rates using parameters based on the following factors:
 - geographical selection and climate conditions -IPCC calculations for k and L₀
 - collection efficiency and area coverage
 - coal ash and fire discount factors
 - user input for waste disposal rates
- allows user to override default parameters

- The recommended values for model parameters were developed using data on China's
 - Climate regions
 - Waste characteristics
 - Waste composition
 - Waste disposal practices
 - Observed landfill operating conditions

- Actual LFG recovery rates from four landfills in China were evaluated
- Data scatter led to the conclusion that insufficient data were available to accurately calibrate the model results to actual reported LFG recovery rates
- Limited recovery data were available and many sites were unwilling to provide actual recovery data

- Locations in China are categorized as "cold or hot" and "dry or wet"
- Based on the following two criteria in accordance with Table 3.4 in the IPCC 2006 Guidelines

Cold vs. Hot:

- "Cold" if mean annual temperature (MAT) < 20°C
- "Hot" if MAT > 20° C

Dry vs. Wet:

- For "hot" locations,
 - "Dry" if mean annual precipitation (MAP) < 1000mm
 - "Wet" if MAP > 1000mm
- For "cold" locations,
 - "Dry" if ratio of mean annual precipitation to potential evapo-transpiration (PET), or MAP/PET, < 1
 - "Wet" if MAP/PET > 1

- Using the above two criteria, each location in China can be classified as belonging to one of the following three climatic zones (or regions):
 - Region 1: Cold and Dry
 - Region 2: Cold and Wet
 - Region 3: Hot and Wet
- There are no "Hot and Dry" locations in China

METHANE GENERATION RATE (k)

 The recommended average k values for the three climatic zones are:

Climatic Zone	k (per year)
Cold and Dry	0.04
Cold and Wet	0.11
Hot and Wet	0.18

ULTIMATE METHANE GENERATION POTENTIAL (L_0)

- Value of L₀ for each climatic zone based on available information on waste characteristics for landfills in each zone
- Value of L₀ reduced if landfill receives waste with significant amount of coal ash (>30%)

ULTIMATE METHANE GENERATION POTENTIAL (L_0)

The recommended L₀ values for the three climatic zones are:

	L ₀ (m3/Mg)				
Climatic Zone	Coal Ash Content <30% (Non-Coal- Based Landfill)	Coal Ash Content >30% (Coal-Based Landfill)			
Cold and Dry	70	35			
Cold and Wet	56	28			
Hot and Wet	56	42			

 If the user indicates that signs of current or past landfill fires were observed, the model will apply a default fire discount factor (30% percent reduction) to the LFG recovery estimate

Collection Efficiency

Collection Efficiency

= (85% - x1 - x2 - x3 - x4 - x5 - x6 - x7) * ACF

Where

- x1 to x7 are discounts based on the landfill's construction and operation characteristics
- ACF, the Area Coverage Factor, is determined by the LFG System Area Coverage Percentage

Collection Efficiency

No. (i)	Question	Discount x _i (%)		
		Yes	No	
1	Is the waste placed in the landfill properly compacted on an ongoing basis?	0	3	
2	Does the landfill have a focused tipping area?	0	5	
3	Are there leachate seeps appearing along the landfill sideslopes? Or is there ponding of water/leachate on the landfill surface?	10	0	

Collection Efficiency

No. (i)	Question	Discount, % (x _i)		
		Yes	No	
4	Is the average depth of waste 10m or greater?	0	10	
5	Is any daily or weekly cover material applied to newly deposited waste?	0	10	
6	Is any intermediate/final cover applied to areas of the landfill that have reached interim or final grade?	0	5	
7	Does the landfill have a geosynthetic or clay liner?	0	5	

LFG System Area Coverage

- The LFG System Area Coverage Percentage is defined as the percentage of the landfilled area that has a comprehensive and operating LFG collection system.
- Brackets I to V are defined in the table below.
- Area Coverage Factor (ACF) associated with each bracket.

Area Coverage Factor (ACF)

LFG System Area Coverage Percentage	Bracket	Area Coverage Factor (ACF)
80 – 100%	I	0.95
60 – 80%	Π	0.75
40 - 60%	III	0.55
20 – 40%	IV	0.35
< 20%	V	0.15

Optional Input

- Optional input:
 - User recommended value for:
 - k
 - L₀
 - Collection efficiency (can vary by year)
 - Supersedes model recommended parameters
 - Input only if reliable data are available
 - Actual measured recovery rate (plotted on output graph only; no calculations performed by model)

Example

- Input
- Output table
- Output graph

China Landfill Biogas Model

Version 1.1 November 2008

developed by: U.S. Environmental Protection Agency

(*****		
	Continue	
l		

LMOP China LFG Model (v1.1)

Instructions

Please complete the information in the yellow highlighted cells. This information is the minimum input required for proper model operation.

Input Parameters:

Name/Title:	Example Landfill, M	Edit title at left which feeds into the	
Location:	Shenzhen City, Guar	ngdong Province	output table and graph.
Year Opened:	1997	Input year landfill began receiving waste at left.	-
Year Closed/Projected to Close:	2010	Input closure year (i.e., the final year in which landfill w	vill receive waste).
Expected Methane Content of LFG:	50%	Please enter the expected methane content of the landfill gas. A va	lue of 50% is recommended unless specific
		information is available from the site that warrants a different value	. This value will be used to calculate the net
		<i>a a b</i>	

flow of recovered gas.

Landfill Characteristics:

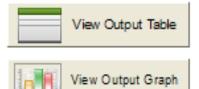
Region of China where the landfill is located (Identify from the map):	Region 3 (Hot and Wet)
Does coal ash make up a significant fraction (greater than 30% of the waste placed in the landfill?	No
Are there signs of current or past subsurface fires at the landfill?	No

Criteria Determining Collection Efficiency:

1.	Is the waste placed in the landfill properly compacted on an ongoing basis?	Yes 🔻
2.	Does the landfill have a focused tipping area?	No 🔽
3.	Are there leachate seeps appearing along the landfill sideslopes? Or is there ponding of water/leachate on the landfill surface?	No 🔽
4.	Is the average depth of waste 10m or greater?	Yes 🔽
5.	Is any daily or weekly cover material applied to newly deposited waste?	Yes 🔽
6.	Is any intermediate/final cover applied to areas of the landfill that have reached interim or final grade?	Yes 🔽
7.	Does the landfill have a geosynthetic or clay liner?	Yes 🔻
8.	In which bracket (I to V) does the LFG System Area Coverage Percentage fall?	II (60 - 80%) 🔽

See users' guide for assistance in answering the above questions or for instructions on how to enter a user-specified or default collection efficiency below.

Modeling Parameters


Based on your inputs, the model will use the "model recommended" values below to estimate the gas potential of the landfill. If you have reliable data that suggest a different value should be used, you may enter a different value to the right of the model recommended value and it will be used to generate the gas estimates.

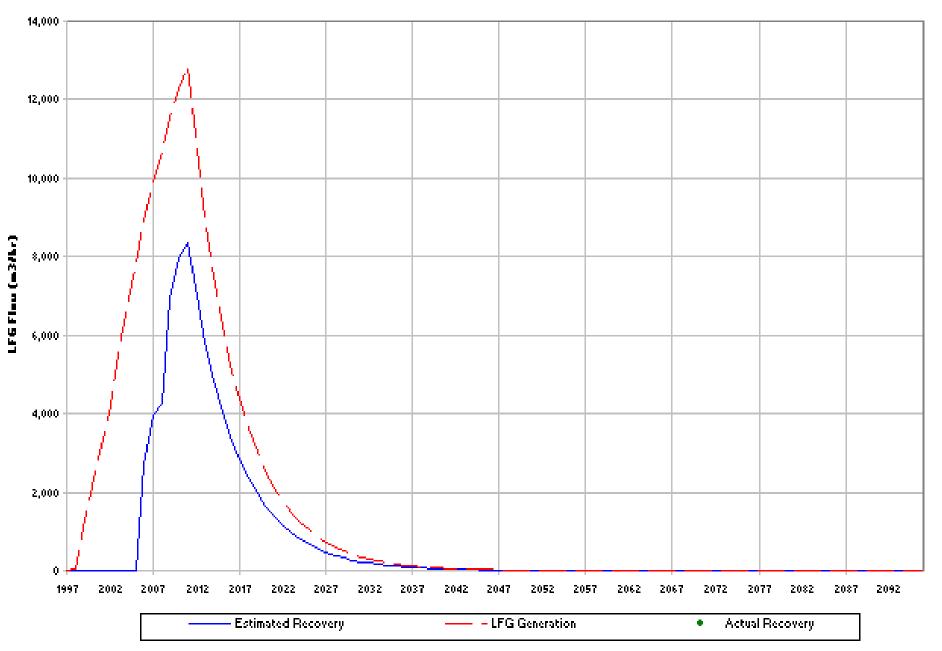
	Model	User
	Recommended	Recommended
	Value	Value
k (17yr)	0.18	
L ₁ (m ³ /metric tonne)	56	50
Collection Efficiency	60%	
Fire Discount Factor	None	Cannot Be Changed

Annual Landfill Activity Data

Input into column 2 the landfill's annual waste acceptance rate. The model recommended or user recommended collection efficiencies have been entered into column 4. You may change these if you have better data for any given year. If the landfill has a gas collection system in place and has measured actual gas recovery for given years, these data may be entered into column 5 (do not enter zeros).

1	2	3	4	5
	Disposal Rate	Vaste-in-Place	LFG Collection	Actual Measured
Year	(metric tonnes/yr)	(metric tonnes)	System Efficiency	Recovery (m³/hr)
1997	18,000	18,000	0%	
1998	563,774	581,774	0%	
1999	654,106	1,235,880	0%	
2000	712,521	1,948,401	0%	
2001	841,719	2,790,120	0%	
2002	1,047,886	3,838,006	0%	
2003	1,126,419	4,964,425	0%	
2004	1,161,308	6,125,733	0%	
2005	1,265,079	7,390,812	0%	
2006	1,277,500	8,668,312	30%	
2007	1,277,500	9,945,812	40%	
2008	1,380,000	11,325,812	40%	
2009	1,380,000	12,705,812	60%	
2010	1,380,000	14,085,812	65%	
2011	0	14,085,812	65%	
2012	0	14,085,812	65%	
2013	0	14,085,812	65%	
2014	0	14,085,812	65%	
2015	0	14,085,812	65%	

Return to Inputs Page


Example Landfill, M2M Mexico Presentation Shenzhen City, Guangdong Province

	Disposal			nd	Energy Output From Direct	From Electric				
	Rate	In-Place			Efficiency				Use Project*	
Year	metric tonnes/yr	metric tonnes	(m³/min)	(m³/hr)		(m²/min)	(m²/hr)	MTCOze	(MJ/hr)	(MV)
1997	18,000	18,000	0	0	0%	0	÷		0	0.000
1998	563,774	581,774	1	34	0%	0		-		0.000
1999	654,106	1,235,880	18	1,098	0%	0			0	0.000
2000	712,521	1,948,401	36	2,157	0%	0			0	0.000
2001	841,719	2,790,120	53	3,153	0%	0	-	-		0.000
2002	1,047,886	3,838,006	70	4,230	0%	0			0	0.000
2003	1,126,419	4,964,425	92	5,520	0%	0	0		0	0.000
2004	1,161,308	6,125,733	112	6,747	0%	0	0	· ·	0	0.000
2005	1,265,079	7,390,812	131	7,838	0%	0			0	0.000
2006	1,277,500	8,668,312	149	8,945	30%	45	2,684	176,985	45,288	4.320
2007	1,277,500	9,945,812	165	9,894	40%	66	3,958	261,013	66,790	6.372
2008	1,380,000	11,325,812	178	10,687	40%	71		· · · · · · · · · · · · · · · · · · ·	72,140	6.882
2009	1,380,000	12,705,812	192	11,543	60%	115	6,926	456,772	116,882	11.151
2010	1,380,000	14,085,812	204	12,259	65%	133	7,968	525,502	134,469	12.828
2011	0	14,085,812	214	12,856	65%	139	8,357	551,115	141,023	13.454
2012	0	14,085,812	179	10,738	65%	116	6,980	460,330	117,793	11.237
2013	0	14,085,812	149	8,970	65%	97	5,830	384,500	98,389	9.386
2014	0	14,085,812	125	7,492	65%	81		· · ·	82,181	7.840
2015	0	14,085,812	104	6,258	65%	68			68,643	6.549
2016	0	14,085,812	87	5,227	65%	57	3,398	224,067	57,336	5.470
2017	0	14,085,812	73	4,366	65%	47	2,838	187,156	47,891	4.569
2018	0	14,085,812	61	3,647	65%	40	2,370	156,326	40,002	3.816
2019	0	14,085,812	51	3,046	65%	33	1,980	130,574	33,412	3.188
2020	0	14,085,812	42	2,544	65%	28	1,654	109,065	27,908	2.662
2021	0	14,085,812	35	2,125	65%	23	1,381	91,099	23,311	2.224
2022	0	14,085,812	30	1,775	65%	19	1,154	76,092	19,471	1.858
2023	0	14,085,812	25	1,483	65%	16	964	63,557	16,264	1.552
2024	0	14,085,812	21	1,238	65%	13	805	53,088	13,584	1.296
2025	0	14,085,812	17	1,034	65%	11	672	44,343	11,347	1.082
2026	0	14,085,812	14	864	65%	9	562	37,038	9,478	0.904
2027	0	14,085,812	12	722	65%	8	469	30,937	7,916	0.755

Return to Inputs Page

Example Landfill, M2M Mexico Presentation

Shenzhen City, Guangdong Province

Recommended Future Modifications

- Calibrate the model with additional actual site recovery data, esp. from landfills in the "Cold and Wet" zone
- Incorporate use of multiple k and L₀ to model different waste fractions at a given time
- Allow the use of different k and L₀ values for different years to reflect changes in waste composition over time

Thank You

- Any questions?
- Email contact:
 - bryce.lloyd@owthk.com.hk