Implications of New Waste Management Legislation in Finland

Jukka Salmela
Helsinki Region Environmental Services Authority, Waste Management
Content

1. Framework set by the European Union
2. National implementation
3. Implications on Waste Management
4. Case study
5. Discussion
Framework

- Key driving mechanisms for Waste Management:

 - Had to be implemented no later than 12.12.2010
 - Emphasis on prevention and energy utilisation

- **RES directive for renewable energy (2009/28/EC)**
 - ”20, 20, 20 by 2020”
 - Requires ”National renewable energy action plans”
 - Set’s ”National overall targets”
 - RES target for Finland is 38 %
National Implementation 1/2

The Waste Directive:

- **Waste management based on landfilling and composting**
 - Land use has set's no limitations (enough space!)
 - WTE has not been subvented by the state
 - Waste incineration; slow market entry due to complaints

- **→ Requires both a political and technological shift**

- **The New Waste Act (646/2011)**
 - Promotion of waste hierarchy
 - Limitation for biowaste landfilling
 - Increased waste tax (landfilled waste)
 - Target for MSW:
 - 50 % recycling
 - 30 % energy
National Implementation 2/2

RES Directive:

- Finland to increase RES share up to 38% by 2020 (28.5% by 2005)
- Action Plan 2010 (with focus on waste management)
- Increase RES production from 7,500 ktoe up to 10,700 ktoe
- Increase biogas utilisation by 0.7 TWh
- Promote CHP production instead of power generation
- Introduce a feed-in tariff for biogas

Law on electricity from RES (1396/2010)
- Guarantee price of 83.5 €/MWh
- Heat premium of 50.0 €/MWh if CHP efficiency > 75%

Graph showing:
- Market Price: 58 €
- Feed-In tariff: 25.50 €
- CHP Premium: 50 €
Implications on Waste Management

- Operators expect zero allowance on landfilling of biowaste in the future
- Waste incineration has/will become dominant in the treatment of MSW
- Treatment of biowaste will shift from composting towards anaerobic digestion
- Local CHP capacity is expected to be build >19 MW (by 2020) due to introduced subventions (LFG, biogas, syngas…)
- Investments on new technology become viable (f.ex waste heat recovery)
Utilisation of product gas / LFG

Figure by Kuittinen et. al. 2009
Utilisation of product gas / MWWTP

Figure by Kuittinen et. al. 2009
Utilisation of product gas / IWWTP

Figure by Kuittinen et al. 2009

- Green bar: utilised
- Red bar: flared

- Units: milj. m³
Utilisation of product gas / co-digestion

Figure by Kuitinen et. al. 2009
New Bioreactor landfill 13-50 ha
- 65 extraction wells
- 3 manifold stations
- ~ 4 000 m³/h (2015)

Old bioreactor landfill 50 ha
- Landfilled waste ~11 Mm³
- 220 extraction wells
- 4 booster stations
- 7 manifold stations
- ~ 9 000 m³/h

Conversion of Composting into Anaerobic Digestion
- Gas utilisation
- 700 m³/h (2013 -)
Case study

- Studies on best utilisation method 2001 - 2005
 - Gas production at highest between 2010-2015
 - Utilisation method has to be readily available!

- DH production:
 - Limited to heating season (Sept. – April)
 - Areal overproduction of DH
 - Low price for the gas

- Feed into NG network:
 - Very high investment & operation cost
 - Building of network connection
 - Possible shortages in gas generation!

- Upgrading into vehicle fuel:
 - 1000 trucks / 7000 cars (contract based)

→ OWN ONSITE CHP PRODUCTION!
CHP Production (before HR)

Power production | MW | 15.0
Efficiency (el) | % | 42.0
Efficiency CHP | % | 86.1 (theoretical)
Production 2010 | GWh | >100

Suitable for recovery using ORC
ORC-process (1,35 MWe)
Expected start-up 11 / 2011
CHP Production (after HR)

- 1,35 MW_e
- 9 MW_{th}
- 15 MW_e
- Local DH network 7 MW_{th}
- Leachate treatment
- Process heat
- Space heating

ORC-process

Low Temperature Thermal Oil Loop
High Temperature Thermal Oil Loop
Energy conversion (CHP)

CHP efficiency: 62.4%

Thermal & mechanical losses:
7,032 kW (18.9%)

Fuel power:
37,304 kW (100%)

Electricity:
15,064 kW (40.4%)

Lube oil:
1,868 kW (5.0%)

Engine cooling:
4,960 kW (13.3%)

Exhaust gases:
8,360 kW (22.4%)
Case summary

− Waste heat utilisation can potentially produce annually > 10 000 MWh electricity, hence covering the total electricity consumption within the studied site.

− If this ~ 10 GWh power production would replace similar production in a traditional condensing coal fired power plant, this would result an annual CO₂ reduction of nearly 8 500 tons.

− A brief economical analysis also gives positive result for the investment.
 − Estimated total investment 2 130 000 € (vat. 0%)
 − Average O&M cost of 0,007 €/MWh
 − Estimated plant availability 90 %
 − IRR 10 %
 − Payback time with electricity market price is 5,8 years
 − Payback time with feed-in tariff scheme is only 3,3 years
THANK YOU FOR YOUR ATTENTION!