Feasible Options for Using CMM Recovered from Songzao Coal and Electricity Company Mines

Presented by,
Raymond C. Pilcher
President, Raven Ridge Resources, Incorporated

Partnership-wide and Steering Committee Meeting
Monterrey, Mexico
Acknowledgements and Appreciation

- Methane to Markets and USEPA for funding and support
- Management and technical staff of the Chongqing Energy Investment Group (CQEIG) and its subsidiary, Songzao Coal and Electricity Company (SCEC).
- Team members from RRR staff and outside experts
Outline

I. Background
II. Geologic and Physiographic Setting
III. Market Conditions
IV. Trends in Gas and Coal Production
V. Production Forecasts End Use Options, and Economic Modeling
VI. Conclusions
I. BACKGROUND
Background

• Basic project information initially gathered in summer of 2007 for two opportunities exhibited at the December 2007 Methane to Markets Partnership Expo
 – Liquefied Natural Gas (drained methane) project
 – VAM project
• Subsequently proposed as a candidate for one of three feasibilities studies conducted at three coal mines in China
• Project was identified as a Methane to Markets sponsored activity and is being tracked and supported as a Methane to Markets Project.
Feasibility Study Approach

• Submitted detailed questionnaire requesting monthly coal production, drained gas production and VAM data for prior 3 years.

• Met with mine management and technical staff and corporate managers of CQEIG and SCEC. Visited each mine and potential construction sites.

• Conducted detailed review of prior end use options analysis provided to SCEC by the Chongqing Coal Mine Design Institute.
Feasibility Study Approach (continued)

• Conducted market analysis, gathered costs for equipment and construction.
• Drafted prefeasibility study
• Reported results to CQEIG and SCEC upper management
• Management chose best end use option(s) and RRR finalized conceptual design and costing
• Working with recently revised economic analysis and drafting final report
Challenges and Considerations

- Songzao coal basin is remote and located in mountainous terrain. Slopes are steep.
- SCEC mining complex extends ~25 km along the length of the basin. Six separate mines are producing and new mine construction is underway.
- Population is concentrated near mining development and roads connect mines along drainages.
- Prime agricultural development neighbors mining in south and is important to local economy. Conflicts may arise over land use.
II. PHYSIOGRAPHIC AND GEOLOGIC SETTING
Location of Songzao Coal and Electricity Company Coal Mines
Geologic Overlay on LANDSAT 7 Image
• Existing gas gathering and transportation infrastructure is limited; but LNG sales price are relatively high

• Local residential and commercial market for gas is limited, best markets are distant; Chongqing is closest, but markets in southeast China are strong.

• Local electricity market, primarily mine use and residential are limited; electricity sales prices are low

• Regional market for electricity is complicated by dispatch order and driven by low avoided cost of hydropower and large coal fired plants
Urban Population of China, 2005

Explanation

Urban Population, 2005
- 0 - 11,500
- 11,501 - 16,500
- 16,501 - 26,400
- 26,401 - 60,000

Population, 2005
- 0 - 10,000,000
- 10,001,000 - 24,000,000
- 24,001,000 - 38,000,000
- 38,001,000 - 54,000,000
- 54,001,000 - 75,000,000
- 75,001,000 - 95,000,000

Population of China with Access to Natural Gas and Consumption by Province, 2005

Explanation
Natural Gas Consumption (MM)

5,000
2,500
1,000
0

Population with Access to Natural Gas
0 - 250,000
251,000 - 1,000,000
1,001,000 - 2,000,000
2,001,000 - 3,000,000
3,001,000 - 6,000,000
6,001,000 - 10,000,000

Liquefied Natural Gas Plants in China

Small Scale Liquified Natural Gas Plants

Kuche County
Shanshan County
Ordos City
Jincheng County
Jinhua City
Dazhou City
Beijing
Zhuhan
Fushan

Small Scale LNG Plants
Scale (tpy)
30,000
50,000
100,000
120,000
150,000
200,000
400,000

Technology Supplier
Chenmax / Black and Veatch
Linde
Chinese Technology
Propak (Canada)
Kryopak (New Braunfels, TX)

Country Boundary

Kilometers
IV. TRENDS IN GAS AND COAL PRODUCTION
Trends in SCEC Coal and Gas Production

- SCEC is expanding coal operation in the Songzao basin at six active mines and one under construction.
- Plans are underway to increase drained gas concentration and volume.
- Coal production may increase to nearly 9 million tons per annum over the next 10 years.
- Gas production may increase to over 300 million cubic meters per annum.
Coal, Drained Gas, and VAM Production
SCEC Mines Years 2005-2007
Variability of Concentration of Methane in Drained Gas and VAM
Coal Production and Drained Gas

SCEC Coal Mines
- Coal Production
- Drained Methane

Coal Production (t)
- 2005: 5,000,000
- 2006: 6,000,000
- 2007: 7,000,000
- 2008: 8,000,000

Methane (m³)
- 2005: 50,000,000
- 2006: 60,000,000
- 2007: 70,000,000
- 2008: 80,000,000
V. PRODUCTION FORECASTS, END USE OPTIONS, AND ECONOMIC MODELING
Input Probability Distributions for Forecasting
Gas Available for New Project End Use

- Coal production (based on plans for expansion)
- Gas drained per tonne of coal mined
- Gas concentration
- VAM emitted
- VAM concentration
- Ratio of gas drained to VAM emitted (drainage efficiency)
- Gas Used at CMM power facilities
- Residential and Commercial Use (metered and unmetered)
Metered Residential
Unmetered Residential Use
Forecast of Coal, Gas Production, and Use
Forecast of CMM Available for Project Use
End Use Options Examined

- Power Generation Only
- LNG Only
- Optimized mix of LNG and power production
Overview of Terrain and Land Use
LNG Option
Optimized Scheme
Models are Used to Simulate Coal Production Increases and Forecast Gas Availability
Economic Modeling

- Probabilistic forecasts of unused gas production for each mine is aggregated to determine probabilistic forecasts of gas available for each end use option
- Ranges of numbers are used to estimate equipment and construction capital, and operating costs
- Taxes and incentives are incorporated
- Revenues for CERs are estimated
- Economic performance is calculated with and without CER revenue
Optimized Project Scenarios at Forecasted Gas Production Probability Thresholds

<table>
<thead>
<tr>
<th>Probability Threshold</th>
<th>Installation Completed</th>
<th>2011</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>p90</td>
<td>LNG Plant Installed Mm3</td>
<td>80</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>PowerGen Installed MW</td>
<td>21.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Emissions Reduced tCO$_2$e</td>
<td>26,816,230</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total CAPEX</td>
<td>$163,450,931</td>
<td></td>
</tr>
<tr>
<td>p50</td>
<td>LNG Plant Installed Mm3</td>
<td>120</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>PowerGen Installed MW</td>
<td>19.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Emissions Reduced tCO$_2$e</td>
<td>40,775,118</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total CAPEX</td>
<td>$183,317,063</td>
<td></td>
</tr>
<tr>
<td>p10</td>
<td>LNG Plant Installed Mm3</td>
<td>200</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>PowerGen Installed MW</td>
<td>21.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Emissions Reduced tCO$_2$e</td>
<td>61,705,954</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total CAPEX</td>
<td>$210,481,063</td>
<td></td>
</tr>
</tbody>
</table>
Probabilistic NPV Forecast Matrix

CAPEX = $163.45

CAPEX = $183.32

CAPEX = $210.48

<table>
<thead>
<tr>
<th>NPV in Millions USD</th>
<th>p90</th>
<th>p50</th>
<th>p10</th>
</tr>
</thead>
<tbody>
<tr>
<td>p10 Forecast of Gas Production</td>
<td>$99.14</td>
<td>$126.93</td>
<td>$163.11</td>
</tr>
<tr>
<td>p50 Forecast of Gas Production</td>
<td>$35.02</td>
<td>$53.65</td>
<td>$77.17</td>
</tr>
<tr>
<td>p90 Forecast of Gas Production</td>
<td>($8.65)</td>
<td>$5.03</td>
<td>$21.21</td>
</tr>
</tbody>
</table>
Probabilistic IRR Forecast Matrix

Project IRR

<table>
<thead>
<tr>
<th></th>
<th>p90</th>
<th>p50</th>
<th>p10</th>
</tr>
</thead>
<tbody>
<tr>
<td>p10 Forecast of Gas Production</td>
<td>26.03%</td>
<td>31.68%</td>
<td>38.83%</td>
</tr>
<tr>
<td>p50 Forecast of Gas Production</td>
<td>17.09%</td>
<td>21.30%</td>
<td>26.59%</td>
</tr>
<tr>
<td>p90 Forecast of Gas Production</td>
<td>7.87%</td>
<td>11.29%</td>
<td>15.60%</td>
</tr>
</tbody>
</table>
Contributions to Uncertainty of Future Gas Production

<table>
<thead>
<tr>
<th>Sensitivity: 2018 Annual Production Remaining for Upgrading</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Datong Mine Coal Production</td>
</tr>
<tr>
<td>-40.0% -20.0% 0.0%</td>
</tr>
<tr>
<td>-37.3%</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>*Datong Coal Mine CMM Drainage</td>
</tr>
<tr>
<td>10.3%</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Shihao Coal Mine CMM Drainage</td>
</tr>
<tr>
<td>9.3%</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Shihao Mine Coal Production</td>
</tr>
<tr>
<td>-8.1%</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>M89</td>
</tr>
<tr>
<td>3.5%</td>
</tr>
</tbody>
</table>

Correlated assumption (sensitivity data may be misleading)

Contributions to Uncertainty of Economic Performance

<table>
<thead>
<tr>
<th>Sensitivity: Project IRR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Gas Sales Price</td>
</tr>
<tr>
<td>-30.0%</td>
</tr>
<tr>
<td>0.0%</td>
</tr>
<tr>
<td>30.0%</td>
</tr>
<tr>
<td>47.4%</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Plant 1 CAPEX Year 1</td>
</tr>
<tr>
<td>-29.0%</td>
</tr>
<tr>
<td>Plant 1 CAPEX Year 2</td>
</tr>
<tr>
<td>-18.4%</td>
</tr>
<tr>
<td>Plant 2 CAPEX Year 2</td>
</tr>
<tr>
<td>-2.6%</td>
</tr>
<tr>
<td>Plant 2 CAPEX Year 1</td>
</tr>
<tr>
<td>-0.1%</td>
</tr>
</tbody>
</table>
Uncertainty of Economic Performance

Contribution of Carbon Credits to Uncertainty of IRR

Contribution of Carbon Credits to Uncertainty of Project NPV
Components of Uncertainty on Economic Performance of Project at p50 Gas Production

- Total CAPEX for p50 project is $183 million USD
- Project IRR including revenue from CERs ($13.00) and VERs ($6.50) is 21.3%
- Without VERs the IRR is 13.6%
- Without CERs the IRR is 5.35%
- The post 2012 impact of the carbon market is significant
- Gas price rationalization is more significant
VI. CONCLUSIONS
Summary of Results

• For 15 year life of project and p50 gas production forecast:
 • 40.1 million tonnes of CO$_2$e emission reduction average 3 million tonnes per annum after 2015 (emissions reduction are less than 2 million tonnes CO$_2$e until full production is achieved and equipment is installed)
 • Range in investment from $163.4 to 210.4 million USD
• Project economic performance is most sensitive to gas sales price.

• IRR without CER revenues (2011 and 2012) is negative for power generation and LNG options, but reduced and positive for optimized mix.

• The project NPV is sensitive to post 2012 emissions reductions market. VERs or CERs are important to overall economic performance.

• Project easily demonstrates financial additionality under present economic conditions in China.
¡Gracias!