Methane to Markets (M2M) Conference

Advancing Project Development in India through Public Private Partnership

New Delhi

Reliance CBM Exploration in India

By

M.S.Sundaram, Supdtg.Geologist

Reliance Industries Limited

22nd February 2007
OUTLINE

- RIL’s CBM blocks
- CBM exploration experience
 - CBM prospect evaluation approach
 - Highlights & major achievements
 - Corehole program
 - Saturation conditions in coal beds
 - Permeability of coal reservoirs
 - CBM well drilling & completion
 - Emerging technologies
- CBM gas usage options
RIL’s CBM BLOCKS

<table>
<thead>
<tr>
<th>Block Name</th>
<th>(Area Sq. Km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rajasthan West</td>
<td>1045</td>
</tr>
<tr>
<td>Rajasthan East</td>
<td>1020</td>
</tr>
<tr>
<td>Total</td>
<td>2065</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Block Name</th>
<th>(Area Sq. Km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sohagpur West</td>
<td>500</td>
</tr>
<tr>
<td>Sohagpur East</td>
<td>495</td>
</tr>
<tr>
<td>Sonhat</td>
<td>825</td>
</tr>
<tr>
<td>Total</td>
<td>1820</td>
</tr>
</tbody>
</table>
CBM EXPLORATION EXPERIENCE

CBM PROSPECT EVALUATION APPROACH

- **Pre-drilling Assessment**
 Geological evaluation, based on available information
 Remote sensing studies
 Lineaments, natural fracturing studies

- **Core Program**
 Core & Log
 Gas Content, Adsorption Isotherm
 Injection/ Falloff Permeability Test

- **Production Test (5-Spot Pilot)**
 Production Test
 Completion Effectiveness
 Relative Permeability

- **Reservoir Simulation**
 Spacing & Pattern
 Field / Area Production Potential
 Field / Area Development Program

- **Commercial Pilot**
 Step out wells
 Larger Spacing
 Completion optimization

Exploration Objectives

- Fixing CBM Gas-in-place and identification of CBM fairway by corehole drilling
- Fixing well producibility numbers from 5-spot cluster wells further refined by commercial pilots
Minor fault in Raniganj coal and shale interbands, north of Kanchanpur

Steeply dipping micaceous sandstone abutting against massive sandstone along E-W fault, Kaser nala
E-W major joint cut across by N-S joint, Kaser nala section
CBM EXPLORATION EXPERIENCE

HIGHLIGHTS

- CBM Discovery : 3.65 TCF, validated by the Directorate General of Hydrocarbons (DGH)
- Technology used for drilling : Air Drilling (First ever used in India for CBM Drilling)
- Gas Production Potential : 3 - 5 MMCMD in a Frontier Area
- Water Production Potential : 50,000 – 70,000 BPD of good quality water
- Investment Potential
 - CBM Production : Over Rs.3000 crores
- Employment Generation
 - Direct employment : In thousands
 - Indirect employment : In thousands
- Infrastructure Development : Roads, Ancillary Industries, Support Industries
- CSR Scope : Health, Education, Environmental conservation, Agricultural Support
- USTDA Funding - Considering positive viability, funding of 0.5 million USD approved for project Techno-economic feasibility study. Contract signed with TDA in May this year
The CBM key reservoir parameters acquired:

- Compleatable Coal thickness and coal seam continuity
- Gas content and gas saturation
- Permeability and its variability

Corehole drilling:

- Faster completion of corehole in 15 days average as against about 60 days by others.
- Faster drilling of dolerite rocks (80-170 m) in 2-3 days as against 1 month by others
- 100% core recovery
- Many open hole Injection / fall off tests have been carried out first time in the country for determination of permeability of the coal seams
COREHOLE PROGRAM

- Critical parameters essential to determine gas in place resource and fairway areas of high gas production
 - Coal thickness
 - Gas content
 - Permeability: a key CBM production parameter, may vary drastically over short distances

There is a paucity of data on gas content and permeability for Indian coal basins

- Exploration Campaign in any frontier basin should aim at getting fix on these 3 parameters
CBM EXPLORATION EXPERIENCE

SATURATION CONDITIONS IN COAL BEDS

- Oversaturated
- Saturated
- Undersaturated

Critical desorption pressure

Gas content (scf/ton) vs. Pressure (psi)
11

CBM EXPLORATION EXPERIENCE

PERMEABILITY OF COAL RESERVOIRS

- Permeability, the key parameter of coal for commercial CBM production can be low and vary drastically over short distances. Therefore, almost all CBM wells are routinely stimulated.

- Coals at deeper depths with high stress conditions, usually have insufficient permeability to allow flow of CBM gas into the well.

- Generally speaking, such adverse conditions are less evident in US, Australian and Indian coals. That is why USA & Australia have many CBM producing fields, whereas drilling in Europe has drawn a blank so far.

Permeability vs. Depth Curve for Different Stress Regimes in the Bowen Basin, Australia

(Modified after Peter Decker et al., 1991)

Permeability (md) vs. Depth (ft)

- RELAXED STRESS
- NORMAL STRESS
- HIGH STRESS
Gas productivity from low stress naturally fractured coal seams is high.
CBM WELL DRILLING

• In general, coals are susceptible to damage from drilling, cementation and frac fluids
 ➢ Air / Air mist drilling
 ➢ Light weight cement slurries and compatible fluids
 ➢ Careful selection of frac fluids

DRILLING

Underbalanced or Air Drilling helps reduce Formation Damage in CBM Wells and results in faster rates of drilling
CBM EXPLORATION EXPERIENCE

CBM Flow Computers – Sohagpur west 5 spot
West 5 – Spot CBM Gas / Water Separation
CBM EXPLORATION EXPERIENCE

CBM Gas Flare – Sohagpur west 5 spot

Photo – 04.05.05
Water Quality

TDS Limits For Water Usage

<table>
<thead>
<tr>
<th>TDS Content</th>
<th>Tolerance [mg/l]</th>
</tr>
</thead>
<tbody>
<tr>
<td><500</td>
<td>Drinking Water</td>
</tr>
<tr>
<td><2,500</td>
<td>Cattle</td>
</tr>
<tr>
<td><3,000</td>
<td>Crop irrigation</td>
</tr>
<tr>
<td><5,000</td>
<td>Sheep</td>
</tr>
</tbody>
</table>

Initial water analysis for Sohagpur water shows that TDS is less than 1000 mg/l

P.S. : Rajasthan Barmer district drinking water bore wells : 5000 + mg/l
CBM WELL COMPLETION

High-Perm Completions in other CBM Basins

<table>
<thead>
<tr>
<th>Field</th>
<th>San Juan (USA)</th>
<th>Arkoma (USA)</th>
<th>Fairview (Australia)</th>
<th>Moranbah (Australia)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perm range (md)</td>
<td>5-100</td>
<td>10-30</td>
<td>10-1000</td>
<td>1-300</td>
</tr>
<tr>
<td>Completion</td>
<td>Cavity for high k; HF for low k; Recent horizontals</td>
<td>Single horizontals</td>
<td>More cavity Some HF</td>
<td>SIS</td>
</tr>
</tbody>
</table>
CBM EXPLORATION EXPERIENCE

AVERAGE WELL PERFORMANCE-CAVITY VS CASED HOLE IN SAN JUAN BASIN

Number of Wells:

<table>
<thead>
<tr>
<th>Year</th>
<th>Open -Hole</th>
<th>Cased-Hole</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>598</td>
<td>230</td>
</tr>
<tr>
<td>1</td>
<td>477</td>
<td>207</td>
</tr>
<tr>
<td>2</td>
<td>366</td>
<td>169</td>
</tr>
<tr>
<td>3</td>
<td>263</td>
<td>140</td>
</tr>
<tr>
<td>4</td>
<td>185</td>
<td>114</td>
</tr>
<tr>
<td>5</td>
<td>117</td>
<td>74</td>
</tr>
<tr>
<td>6</td>
<td>75</td>
<td>57</td>
</tr>
<tr>
<td>7</td>
<td>38</td>
<td>24</td>
</tr>
<tr>
<td>8</td>
<td>19</td>
<td>12</td>
</tr>
<tr>
<td>9</td>
<td>17</td>
<td>8</td>
</tr>
</tbody>
</table>

Average Daily Gas Production Per Well, Mcf/d

- Cavity Completion
- Cased-Hole-Frac

Year
EMERGING TECHNOLOGIES – CAVITY COMPLETION

Ideal Targets

• High rank, Low to medium volatile bituminous Coals
• Fragile coals
• Moderate to good permeability, 10+ mD
• Over pressured coal reservoirs
• Costs about 1.5 times more than normal vertical wells but produce 4 to 6 times more

• Many Parts of Sohagpur CBM blocks having the above characteristics are good for Cavity Completion
EMERGING TECHNOLOGIES IN CBM - IN SEAM DRILLING

Plan for Sohagpur West Block, Seam-III

Drilling in seam – directional well from a distance of 1200 m.

Estimated production potential – 1.5 to 2.0 MMSCFD per well
EMERGING TECHNOLOGIES IN CBM - IN SEAM DRILLING

Surface to in-seam horizontal directional drilling in chevron pattern

CH₄, Australia drilled over 100 sets of chevron wells producing 1-2 million cubic feet per day of CBM Gas
Advanced technology implementation – Potential Impact

<table>
<thead>
<tr>
<th>Technology</th>
<th>Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal and in-seam drilling</td>
<td>Increase ultimate recovery by up to 50%</td>
</tr>
<tr>
<td>Multilateral drilling</td>
<td>Increase ultimate recovery by up to 50%</td>
</tr>
<tr>
<td>Air drilling</td>
<td>Cut drilling time and cost by up to 50%</td>
</tr>
<tr>
<td>Optimizing stimulation</td>
<td>Increase ultimate recovery by 20-50%</td>
</tr>
<tr>
<td>Better well spacing</td>
<td>Could double NPV</td>
</tr>
<tr>
<td>Continuously variable pump controller</td>
<td>Save workovers, boost ultimate recovery By 5-10%</td>
</tr>
<tr>
<td>Foam cement</td>
<td>Increase ultimate recovery by 5-10%</td>
</tr>
<tr>
<td>Coiled Tubing Frac</td>
<td>Increase ultimate recovery by 15-30%</td>
</tr>
<tr>
<td>Down hole gas compression</td>
<td>Increase ultimate recovery by 20-40%</td>
</tr>
<tr>
<td>Smaller rigs</td>
<td>Save $15,000 per location</td>
</tr>
<tr>
<td>Closed loop air drilling</td>
<td>Save $20,000-30,000/well</td>
</tr>
<tr>
<td>Casing drilling</td>
<td>Save $10,000/well</td>
</tr>
<tr>
<td>Jet slotting</td>
<td>Save $10,000/well, increase ultimate recovery by 20-50%</td>
</tr>
</tbody>
</table>

- Green: Implemented in Phase-I
- Yellow: Being implemented in Phase-II
Possible CBM Based Industries

- Fertilizers, chemicals & petrochemicals
- Town Gas & Industrial fuel supply
- Power generation
- Cement
- Paper and paper products
- Sponge iron & steel
- Ceramics
- Glass
- Textiles

Steel, Glass, Ceramics and Paper manufacturing companies are showing keen interest to put up their plants in the region
CBM GAS USAGE OPTIONS

Gas demand in the region

<table>
<thead>
<tr>
<th>Location</th>
<th>Industry</th>
<th>Distance from CBM blocks in Km</th>
<th>Gas Demand Potential in MMSCMD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shahdol</td>
<td>Chemicals, Paper, Power, Fuel, City gas</td>
<td>25</td>
<td>0.35</td>
</tr>
<tr>
<td>Katni</td>
<td>Cement, Fuel, City gas</td>
<td>135</td>
<td>2.92</td>
</tr>
<tr>
<td>Maihar</td>
<td>Cement, Fuel, City gas</td>
<td>153</td>
<td>0.40</td>
</tr>
<tr>
<td>Rewa</td>
<td>Cement, Fuel, City gas</td>
<td>200</td>
<td>1.12</td>
</tr>
<tr>
<td>Satna</td>
<td>Cement, Fuel, City gas</td>
<td>200</td>
<td>0.65</td>
</tr>
<tr>
<td>Allahabad</td>
<td>Fertilizer complex</td>
<td>350</td>
<td>4.50</td>
</tr>
<tr>
<td>TOTAL</td>
<td>Chemicals, Paper, Power, Fuel, City gas</td>
<td></td>
<td>9.99</td>
</tr>
</tbody>
</table>

With availability of CBM gas, accelerated industrial development is a good prospect in and around Shahdol apart from above demand.
Thank You