

Methane to Markets Feb 22-23, New Delhi

Overview of Jincheng 120 MW Coal Mine Methane Cogeneration Power Project in PRC

Sustainable Green Electricity From Coal Gas in China

> Prasanna Deshpande Industry Manager - Gas Caterpillar Commercial Private Limited, Bangalore ,India deshpande_prasanna_s@cat.com

Road Map for the Presentation

- Introduction
- Technical Challenges and Selection
- Product Capabilities
- Commercial Opportunity

Road Map

- Introduction
- Technical Challenges and Selection
- Product Capabilities
- Commercial Opportunity

CATERPILLAR[®] WHERE THE WORLD TURNS FOR POWER

Project Scope

- 120 MW of 24/7 Continuous Electric Power and Steam Generation
 - Divided into 4 Bank of 30 MW Each
 - 60X CAT 1.8 MW G3520C CMM Gas Engines
 - 16.5 Tons/hr of Superheated Steam Generation at 2.5 MPa and 400°C
 - 4X 3 MW Steam Turbines and/or 10 MW of Hot Water for Winter Heating
 - 10.5 kV, 50 Hz Operation
 - Standard Grid Parallel with Emergency Island Mode
 - Full Load System Thermal Efficiency of 80%

WHERE THE WORLD TURNS FOR POWER

HRSG

3 MW Steam Turbine

CATERPILLAR[®] WHERE THE WORLD TURNS FOR POWER

Power Project Benefits

- Commercial
 - Improve project viability, cash flow on account of Carbon credit
- Social Economic and Environmental
 - Electric Power for Township
 - Energy Efficiency Program Cogeneration
 - Removal of Hazardous Gas Mine Safety
 - Reduction of Greenhouse Gas Environmental (CDM Program in Place)

Vital Statistics

- Power Generation Export to Utility
 - 840,000 MW-hr/yr
- Heat Recovery
 - 233,600 GJ
- Carbon Credit
 - 4.5 MMTCE to the World Bank's Prototype Carbon Fund

Road Map

- Introduction
- Technical Challenges and Selection
- Product Capabilities
- Commercial Opportunity
- Summary

Low Energy Fuels

Typical Fuel Properties

Component	Symbol	Units	Pipeline Natural Gas	СВМ	CMM*
Methane	CH_4	vol %	92.3	85.9	40.0
Ethane	C_2H_6	vol %	2.5	3.8	
Hydrogen Sulfide	H_2S	vol %		/	
Oxygen	O ₂	vol %		2.1	12.6
Nitrogen	N_2	vol %	3.5	8.2	46.8
Others		vol %	1.8	0.0	0.6
Lower Heating Value	LHV	MJ/Nm ³	33.2	32.5	13.4
Caterpillar Methane Number	MN		80	86	100

* Represents one particular site

Key Technical Challenges

- Fuel Quality and Fuel Handling
 - Gas Conditioning
 - Combustion Stability
 - Emissions
 - Life

Gas Conditioning

- < 80% Relative Humidity at Minimum Gas Operating Temperatures Required
- Gas to be Filtered for Particulates < 2 microns
- Pressures to be Boosted Up from Near Atmospheric to 700 mbar

Fuel Management and Handling

- Fuel Quality Swing Considerations
 - Predetermined Fuel Composition Information
 - Ensures Engine Safety, Reliability, Performance and Life

Contaminant Control

- Minimized Contaminants
 - Ensures Longevity
 - Reduces Downtime
 - Lowers O&M and Repair Costs

Selection Criteria

- Gas Pressure Requirement for Prime Mover
- Availability of Gas Resource Assessment
- Generation Voltage
- Utility Connection Point Voltage
- Ability to Tolerate Fuel Swings
- Capital Costs

Selection Criteria >Gas pressure requirement

- > Why is it important?
 - >Well pressure is in the order of 50-100 mbar
 - Compression equipment needed to boost the pressure
 - Volumes required are high due to the low LHV
- > High speed Engines 1 2 MW require 300-1000 mbar (16 HP/ MW Compressor power)
- > Medium Speed Engines 3 6 MW range need 2 3 bar (50 HP/ MW Compressor power)
- > Turbines (6 MW and above) need around 25 bar (130 HP/ MW Compressor power)
- Higher pressure calls for more elaborate compression equipment
 - More power needed just to boost compression
 - Wasted Energy consumption affects overall efficiencies
 - More safety concerns

Selection Criteria

Availability of Gas

Depends on the type and characteristics of the mine

Limited by the extractability and process of mining

Wide fluctuations in volume is a real possibility

Selection Criteria

>Ability to tolerate fuel swings

- > Depends on the type of gas available in the region
- Calls for a faster response of the Engine
- Calls for better air fuel ratio control

Gas Generator Set selected

From all the arguments the following emerge

- Require Engines operating with lower gas pressures
- >Due to volume variation multiple units required
- Flexibility to have Low Voltage & High Voltage Generation
- >Ability to response quickly to fuel swings

Agenda

- Introduction
- Technical Concerns and Challenges

Product Capabilities

- Commercial Opportunity
- Summary

Engine Technology Development

- Basic Requirements
 - Safety
 - Reliability
 - Efficiency
 - Low Emissions
 - Product Support

Voice of the Customer!

Product Support

- Fast Repair and Reduced Downtime
 - Critical for Plant Economics
 - Cannot be Compensated with Higher Efficiency
- Worldwide Logistics
 - Parts Supply within 24 hours
- Service Contracts
 - Extended Service Agreements
 - Fleet Management

Road Map

- Introduction
- Technical Concerns and Challenges
- Product Capabilities
- Commercial Opportunity

Project Finance (USD240M)

- Bank Loans(74%)
 - Asian Development Bank
 - Japan Bank for International Cooperation
 - Industrial Commercial Bank of China
- Equity Capital (26%)
 - Coal Mining Group
 - Provincial Government
 - Municipal Government
- Grants
 - USTDA Grant on project management (USD 450K)

Equipment Partnership

- Customer and End User
 - Coal Mining Group
- Equipment Suppliers
 - Caterpillar (Gas Generator Sets, Switch Gear, Gas Train)
 - Shanghai Electric Company (Balance of Plant)

Project Cash Flow

- Power Purchase Agreement (PPA)
 - Established with Provincial Utility Company
- Fuel Purchase Agreement (FPA)
 - Established between sister companies under the same Mining Group
- Carbon Credit Trading
 - Carbon credits (4.5 million tones CO₂equivalent) from the World Bank's Prototype Carbon Fund
 - Estimated carbon credit trading between \$5-10 USD/ton

WHERE THE WORLD TURNS FOR POWER

OUESTIONS? Thaile you

Mail: deshpande_prasanna_s@cat.com