Methane to Markets
Feb 22-23, New Delhi
Overview of Jincheng 120 MW Coal Mine Methane Cogeneration Power Project in PRC
Sustainable Green Electricity From Coal Gas in China

Prasanna Deshpande
Industry Manager - Gas
Caterpillar Commercial Private Limited,
Bangalore ,India
deshpande_prasanna_s@cat.com
Road Map for the Presentation

- Introduction
- Technical Challenges and Selection
- Product Capabilities
- Commercial Opportunity
Road Map

• Introduction
• Technical Challenges and Selection
• Product Capabilities
• Commercial Opportunity
Project Timeline

- **Phase 1 - First 30 packages**
 - CAT Introduction: November 2002
 - US TDA $0.5M Funds Approved: January 2005
 - CAT Awarded Contract: March 2006
 - Grand Signing Ceremony in BJ: March 2007
 - Phase 1 Commissioning: May 2007
 - Project Handover: June 2007

- **Phase 2 - Second 30 packages**
 - Custom Visit CBM EPG Site: March 2004
 - ADB Project Loan Approved: March 2005
 - Announcement of CAT Successful Bid: November 2005
 - Tender Open: December 2005
 - CAT Successful Bid: April 2006
 - Tender Open: March 2006
 - CAT Selected: April 2006
Project Scope

- 120 MW of 24/7 Continuous Electric Power and Steam Generation
 - Divided into 4 Bank of 30 MW Each
 - 60X CAT 1.8 MW G3520C CMM Gas Engines
 - 16.5 Tons/hr of Superheated Steam Generation at 2.5 MPa and 400°C
 - 4X 3 MW Steam Turbines and/or 10 MW of Hot Water for Winter Heating
 - 10.5 kV, 50 Hz Operation
 - Standard Grid Parallel with Emergency Island Mode
 - Full Load System Thermal Efficiency of 80%
3 MW Steam Turbine

HRSG

5X G3520C

G3520C
Power Project Benefits

• Commercial
 – Improve project viability, cash flow on account of Carbon credit

• Social - Economic and Environmental
 – Electric Power for Township
 – Energy Efficiency Program – Cogeneration
 – Removal of Hazardous Gas – Mine Safety
 – Reduction of Greenhouse Gas – Environmental (CDM Program in Place)
Vital Statistics

• Power Generation - Export to Utility
 – 840,000 MW-hr/yr

• Heat Recovery
 – 233,600 GJ

• Carbon Credit
 – 4.5 MMTCE to the World Bank’s Prototype Carbon Fund
Road Map

- Introduction
- Technical Challenges and Selection
- Product Capabilities
- Commercial Opportunity
- Summary
Low Energy Fuels

Low Energy Fuel Heat Range

- Coal Seam
- Landfill
- Digester
- Wood Chip
- Manufactured

Heat Value (MJ/Nm³)
Typical Fuel Properties

<table>
<thead>
<tr>
<th>Component</th>
<th>Symbol</th>
<th>Units</th>
<th>Pipeline Natural Gas</th>
<th>CBM</th>
<th>CMM*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methane</td>
<td>CH$_4$</td>
<td>vol %</td>
<td>92.3</td>
<td>85.9</td>
<td>40.0</td>
</tr>
<tr>
<td>Ethane</td>
<td>C$_2$H$_6$</td>
<td>vol %</td>
<td>2.5</td>
<td>3.8</td>
<td>---</td>
</tr>
<tr>
<td>Hydrogen Sulfide</td>
<td>H$_2$S</td>
<td>vol %</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Oxygen</td>
<td>O$_2$</td>
<td>vol %</td>
<td>---</td>
<td>2.1</td>
<td>12.6</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>N$_2$</td>
<td>vol %</td>
<td>3.5</td>
<td>8.2</td>
<td>46.8</td>
</tr>
<tr>
<td>Others</td>
<td></td>
<td>vol %</td>
<td>1.8</td>
<td>0.0</td>
<td>0.6</td>
</tr>
<tr>
<td>Lower Heating Value</td>
<td>LHV</td>
<td>MJ/Nm3</td>
<td>33.2</td>
<td>32.5</td>
<td>13.4</td>
</tr>
<tr>
<td>Caterpillar Methane Number</td>
<td>MN</td>
<td></td>
<td>80</td>
<td>86</td>
<td>100</td>
</tr>
</tbody>
</table>

* Represents one particular site
Key Technical Challenges

- Fuel Quality and Fuel Handling
 - Gas Conditioning
 - Combustion Stability
 - Emissions
 - Life
Gas Conditioning

• < 80% Relative Humidity at Minimum Gas Operating Temperatures Required
• Gas to be Filtered for Particulates < 2 microns
• Pressures to be Boosted Up from Near Atmospheric to 700 mbar
Fuel Management and Handling

- Fuel Quality Swing Considerations
 - Predetermined Fuel Composition Information
 - Ensures Engine Safety, Reliability, Performance and Life

- Contaminant Control
 - Minimized Contaminants
 - Ensures Longevity
 - Reduces Downtime
 - Lowers O&M and Repair Costs
Selection Criteria

- Gas Pressure Requirement for Prime Mover
- Availability of Gas – Resource Assessment
- Generation Voltage
- Utility Connection Point Voltage
- Ability to Tolerate Fuel Swings
- Capital Costs
Selection Criteria

Gas pressure requirement

- Why is it important?
 - Well pressure is in the order of 50-100 mbar
 - Compression equipment needed to boost the pressure
 - Volumes required are high due to the low LHV
- High speed Engines 1 – 2 MW require 300-1000 mbar (16 HP/ MW Compressor power)
- Medium Speed Engines 3 – 6 MW range need 2 – 3 bar (50 HP/ MW Compressor power)
- Turbines (6 MW and above) need around 25 bar (130 HP/ MW Compressor power)
- Higher pressure calls for more elaborate compression equipment
 - More power needed just to boost compression
 - Wasted Energy consumption affects overall efficiencies
 - More safety concerns
Selection Criteria

Availability of Gas

- Depends on the type and characteristics of the mine
- Limited by the extractability and process of mining
- Wide fluctuations in volume is a real possibility
Selection Criteria

- Ability to tolerate fuel swings
 - Depends on the type of gas available in the region
 - Calls for a faster response of the Engine
 - Calls for better air fuel ratio control
Gas Generator Set selected

- From all the arguments the following emerge
 - Require Engines operating with lower gas pressures
 - Due to volume variation multiple units required
 - Flexibility to have Low Voltage & High Voltage Generation
 - Ability to response quickly to fuel swings
Agenda

• Introduction
• Technical Concerns and Challenges
• Product Capabilities
• Commercial Opportunity
• Summary
Engine Technology Development

- Basic Requirements
 - Safety
 - Reliability
 - Efficiency
 - Low Emissions
 - Product Support

Voice of the Customer!
Product Support

• Fast Repair and Reduced Downtime
 – Critical for Plant Economics
 – Cannot be Compensated with Higher Efficiency

• Worldwide Logistics
 – Parts Supply within 24 hours

• Service Contracts
 – Extended Service Agreements
 – Fleet Management
Road Map

- Introduction
- Technical Concerns and Challenges
- Product Capabilities
- Commercial Opportunity
Project Finance (USD 240M)

• Bank Loans (74%)
 – Asian Development Bank
 – Japan Bank for International Cooperation
 – Industrial Commercial Bank of China

• Equity Capital (26%)
 – Coal Mining Group
 – Provincial Government
 – Municipal Government

• Grants
 – USTDA Grant on project management (USD 450K)
Equipment Partnership

• Customer and End User
 – Coal Mining Group
• Equipment Suppliers
 – Caterpillar (Gas Generator Sets, Switch Gear, Gas Train)
 – Shanghai Electric Company (Balance of Plant)
Project Cash Flow

- Power Purchase Agreement (PPA)
 - Established with Provincial Utility Company

- Fuel Purchase Agreement (FPA)
 - Established between sister companies under the same Mining Group

- Carbon Credit Trading
 - Carbon credits (4.5 million tones CO$_2$ equivalent) from the World Bank’s Prototype Carbon Fund
 - Estimated carbon credit trading between $5-10 USD/ton
QUESTIONS?
Thank You

Mail: deshpande_prasanna_s@cat.com