Developing a Diverse CMM Industry including VAM Utilisation

Dr Cliff Mallett Acting Chief, CSIRO Exploration and Mining Technology Court, Pullenvale, Qld 4069, Australia cliff.mallett@csiro.au

Methane to Markets Ministerial Meeting, 15-17 November 2004

Coal mine methane emissions-1

A Mine CH_4 :

- In Australia: ~6% of GHG production
- World total: VAM over 200 MMT CO_{2e} in 2000 (from US EPA report).

Coal-related methane emission sources:

Mine methane emissions-2

*****Underground

✓ PRE-DRAINAGE

- High CH_4 conc ~ 95%,
- Relatively consistent flow.

✓ POST-DRAINAGE

- Medium CH₄ conc ~(>30%),
- Rapid change in flow rate.

✓ VENTILATION AIR

- <u>Huge amount, 150~300m³/s</u>
- <u>Variable CH_4 conc <1%</u>.
- Most difficult to use

(estimated based on mine-site data)

What can we do with the mine methane?

Combustion

thermal oxidation catalytic oxidation **Purification to make pipeline gas Feedstock for chemicals** methanol

carbon black

□Map of potential technologies

Mine Methane						
Low Concentration		Medium-High Concentration		Hybrid		
Mitigation	Use	Mitigation	Use	Use		
Thermal TFRR, Catalytic CFRR, Catalytic CMR.	Catalytic turbine, Recuperative turbine, Catalytic + 2nd heat, Power station air, Air for engines, Air for turbines, Concentrator (?)	Flare.	Purify, Gas engines, Gas turbines, Fuel cells, Co-firing, Feedstock.	Fluidised bed, Rotating kiln.		

Technologies for drainage gas Purification: pipeline gas Power generation/cogeneration **Reciprocating gas engine Conventional gas turbine** Co-firing in power stations Fuel cell power generation (electrochemical reaction) Chemical feedstocks **Methanol production Carbon black production**

Technologies for ventilation air methane -1

Ancillary uses

substituting the ventilation air for ambient air in combustion processes

Limited sites or small volumes used not in case studies

Principal uses

- combustion of the methane in ventilation air as a primary fuel
- Thermal flow-reversal reactor (TFRR),
- Catalytic flow-reversal reactor (CFRR),
- Catalytic monolith reactor (CMR),
- Catalytic lean-burn gas turbine,
- Recuperative lean-burn gas turbine,
- Enriching process (?, not in case studies)

□ Technologies for ventilation air methane - 2

Principal use technologies

CH₄ mitigation

· -			-
Feature	MEGTEC	CANMET	CSIRO
	TFRR	CFRR	CMR
Principles of operation	Flow reversal	Same as TFRR	Monolith reactor
Catalyst	No	Yes	Yes
Auto-ignition	1000°C	350~800°C	500°C
temperature			
Experience	Some field units	Bench-scale trials with	Bench-scale study on
	operating on methane	simulated mine exhaust	combustion
Cycle period length	Shorter	Longer	Continuously
Minimum CH ₄	0.2%	0.1%	0.4%
concentration			
Applicability	CH ₄ mitigation	CH ₄ mitigation	CH ₄ mitigation
Possibility of	Need additional fuel to	Need additional fuel to	Need additional fuel to
recovering heat to	increase CH ₄	increase CH ₄	increase CH ₄ concentration
generate power	concentration and	concentration and	and maintain it constant
	<mark>maintain it constant</mark>	<mark>maintain it constant</mark>	
Variability of CH ₄	Variable	Variable	Variable
concentration			
Plant size	Huge	Larger	Compact
Operation	More complicated	More complicated	Simple
Lifetime	N/A	N/A	>8,000 hours for catalysts,
NO _x emission	N/A	Low	Low (<1ppm)
CO emission	Low	Low	Low (~0ppm)

All need extra fuel added to VAM to generate power

□ Technologies for ventilation air methane - 3

CH₄ mitigation & utilisation

Feature	EDL	CSIRO	Ingersol-Rand
	Recuperative Turbine	Catalytic Turbine	Catalytic Microturbine
Principles of	Air heater inside	Monolith reactor	Monolith reactor
operation	combustion chamber		
Catalyst	No	Yes	Yes
Auto-ignition	700~1000°C	500°C	N/A
temperature			
Experience	Pilot-scale trial	Bench-scale study on	Conventional microturbine
_		combustion	development
Cycle period length	Continuously	Continuously	Continuously
Minimum CH ₄	<mark>1.6%</mark>	1%	<mark>1%</mark>
concentration for			
operation			
<mark>Applicability</mark>	CH ₄ mitigation and	CH ₄ mitigation and power	CH ₄ mitigation and power
	power generation and	generation and need	generation and need additional fue
	<mark>need additional fuel to</mark>	additional fuel to increase	to increase CH ₄ concentration
	increase CH4	CH ₄ concentration	
	concentration		
Possibility of	Feasible (power	Feasible (power	Feasible (power generation)
recovering heat	generation)	generation)	
Variability of CH ₄	Constant	Constant	Constant
concentration			
Operation	Simple and stable	Simple and stable	Simple and stable
Lifetime	May be shorter due to	>8,000 hours for catalysts,	N/A
	the high temperature	and 20years for a turbine.	
	combustion heat		
	exchanger		
NO _x emission	N/A	Low (<3ppm)	Low
CO emission	Low	Low (~0ppm)	Low 8

Technologies for ventilation air methane & drainage gas

No single technology provides an easy solution

Combined units can give benefits Example: 1% methane turbine and conventional gas engine power plant system can maximise the mitigation and utilisation of all of mine methane.

Case studies of two mines

Technical & economic assessment of the implementation of most of the above technologies into an Australian mine

Technical feasibility

• Range of technologies, 95% availability, maximum capacity

Economics

- determine major economic parameters: capital cost, operational cost, IRR, net present value, break-even cost
- basic case
 - plant lifetime: 25 years,
 - installation cost: 10% of equipment capital cost,
 - discount rate: 7.5%,
 - electricity price: AU\$37/MW•hr,
 - natural gas price: \$5.05/GJ,
 - no carbon credit.

CSIRO

CH₄ emissions at mine

(Based on average values) Vent air: 32,433,515 m³/year, 32.8% Drainage: 66,475,933 m³/year, 67.2%

Mine ventilation methane is contained in 5.4 billion m³ of air

Case study-Mine 1 CH₄ at mine site

- ✓ Biggest CH₄ concentration variation rate: 0.01%/hour in vent air
- ✓ CH₄ in Ventilation air: min 0.2%, max1.44%, average 0.56%
- ✓ CH₄ in drainage gas: average 79.2% for Pre, 71.8% for Post
- ✓ Pure CH₄ flow in drain gas: $2.11m^3/s$

Operating status

Combined 1% methane turbine and gas engine power plant

Comparison of plant sizes and electricity production

Gas Engine - Gas engine power plant
Gas Turbine - Gas turbine power plant
1% Turbine - 1% CH₄ lean-burn turbine plant
1.6% Turbine - 1.6% CH₄ lean-burn turbine plant
1% & Engine - combined 1% CH₄ lean-burn turbine and gas engine power plant
1.6% & Engine - combined 1.6% CH₄ lean-burn turbine and gas engine power plant

15

Comparison of methane mitigation and utilisation

Amount of mitigated/utilised mine methane

Case study-Mine 2 (Typical gassy mine)

✓ ~64% CH₄ emitted with ventilation air

✓Analysis summary of plant size and electricity production

Potential of the 1% CH₄ turbine for ventilation air

methane at typical gassy mines!

OMINE METHANE MITIGATION AND POLICIES Applications in Australia

National Greenhouse Strategy – framework National Carbon Accounting System – publishes data Greenhouse Abatement Program – provides capital German Creek, Teralba, Bellambi mines (gas engines) West Cliff (TFRR – MEGTEC) NSW Greenhouse Abatement Certificates NGAC Credits are owned by owner of facility that does the mitigation example – Kiln with waste coal & mine methane National renewable scheme – mine wastes excluded although municipal waste methane included

Current research projects in CSIRO

- Characterisation and cleaning of mine ventilation air flows (Shi Su),
- Technical and economic issues on mine methane mitigation and utilisation (Shi Su),
- ♦ Development of a small pilot-scale demonstration unit of $1\% CH_4$ catalytic turbine (Shi Su),
- International networking on greenhouse gas (CH₄) mitigation (Shi Su),
- Coal mine greenhouse gas measurement Australian practice (John Carras),
- Monitoring methane emissions from open cut mining (John Carras).

In CLOSING

Before a successful deployment of any technology, the following important issues need to be resolved:

- *tis the technology proven?*
- no decrease in mine safety and compliance with all regulatory standards,
- Profitable economics using the methane energy and carbon reduction revenues,
- * who owns ventilation air methane/CMM,
- *to be portable.*

