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3BACKGROUND

• Coal accounts for 25% of global primary energy, supplies 
40% of global electricity and meets about 70% of the 
energy demand of the steel/aluminium industry.

• Coal is also the leading fuel in meeting the projected 
growth in the energy demand (93% by 2030) of emerging 
economies such as China and India (IEA 2009). 

• Continued dependence on coal, however, requires coal 
production from deeper and more gassy coal seams as 
shallow reserves are being exhausted in many parts of the 
world.
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4• In this context coal mine methane (CMM) poses a range of 
safety and environmental challenges.

• LEL (5%), UEL (15%), GWP (25 over 100 years)

Source: ECE ENERGY SERIES No.31 Source: USEPA, EPA 430-R-03-002, 2003

US
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Source: USEPA, EPA 430-R-03-002, 2003

USWorld
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Country VAM (MtCO2 e) %World

China 90.0 40

US 33.8 15

Ukraine 33.8 15

Australia 11.3 5

Russia 11.3 5

Total 225 80
Source: USEPA, EPA 430-R-03-002, 2003
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• Capturing and using VAM is challenging because:
 Large airflows (47 - 470 m3/s) 

 Low concentrations: range 0.11.0%  (often 0.30.5%)
• Variable, both flow and concentration

CH4 
Source

Gas Flow  
Rate (m3/y)

Average 
CH4 

Conc. 
(%)

CH4 Flow 
Rate (m3/y)

Heating 
Value 

(MJ/m3)

Emissions 
(MtCO2 e)

Drainage 
CMM

73.2 
 

106 75.3 55.1 
 

106 27.2 0.8

VAM 
(@ 210 
m3/s)

58.0 
 

108 0.56 32.5 
 

106 0.2 0.5

Total 87.6 
 

106 1.3

Example: GHG Emission at a Typical Australian Gassy Mine 
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8VAM ABATEMENT TECHNOLOGY STATUS 

Source: Masaji  Fujioka, JCOAL 

What are 
the VAM 
Mitigation 
options?

•Destruction
• Utilisation
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9Underlying Technology VAM Use Process Type
Ancillary Principal Oxidation Enrichment

Conventional Fossil Fuel-Fired Power 
Plants (Boilers, Kilns, Furnaces)

 

Flares  
Gas Engines / Generators  
Thermal Oxidisers  
Catalytic Oxidisers  
REDOX Processes  
Gas Turbines  
Fuel Cells  
Adsorbents  
Membranes  
Mechanical Separators  
Biological Convertors  
Others (e.g. Plasmas, Pyrolysis, PO, 
Gasification)
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Underlying 
Technology

Conventional Fossil 
Fuel-Fired Power Plants

Flares

Gas Engines / 
Generators
Thermal Oxidisers

Catalytic Oxidisers

REDOX Processes

Gas Turbines

Fuel Cells

Adsorbents

Membranes

Mechanical Separators

Biological Convertors

Others (e.g. Plasmas, 
Pyrolysis, PO)

TFRR

Porous 
Burners

VOCSIDIZER™

Corky’s VAM-RAB

CFRR
L.T. Cat. Convs. 
L.T. Methanol 
Convs. Chemical looping

Recuperative Lean G.T.
CSIRO Lean Catalytic G.T.

Kawasaki G.T.
Supersonic  G.T.

Source: Masaji Fujioka, JCOAL 

Source: MEGTEC

Source: Corky’s

Source: USEPA
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Technology  Assessment
Conventional Fossil Fuel-Fired Power Plants (Boilers, Kilns, Furnaces)

Key Features * Uses VAM as combustion air; * No fundamental issue

Challenges * Site specific engineering issues;  * Requires close proximity; * No large-scale demo

Maturity *  High

Cost * Low (if in close proximity)

Flares

Key Features * Uses VAM as combustion air; * No fundamental issue

Challenges * Site specific eng issues;  * Requires particulate removal; * No large-scale demo

Maturity * High

Cost * Low

Gas Engines / Generators

Key Features * Uses VAM as combustion air; * No fundamental issue

Challenges * Site specific eng issues;  * Sensitive to particulate matter; 
* Requires large amounts of primary fuel (drainage gas) to operate 

Maturity * High

Cost * Medium to high
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Thermal Oxidisers (TFRR)

Key Features *  Uses a high thermal mass ceramic for recuperative thermal oxidation of VAM
*  Under ideal conditions is self sustaining for methane conc. > 0.1%
*  Practically though is self sustaining at methane conc. > 0.3-0.5% 
*  Single and dual “CAN” configurations
*  Established track record in VOC destruction at scale similar to VAM

Challenges *  Lack of large-scale experience at high temperatures associated with VAM
*  Safety issues (see next section for details)

Maturity *  Medium to High

Cost *  High

Thermal Oxidisers (Porous Burners)

Key Features *  Similar to a single CAN TFRR
*  Can process VAM with methane as low as 0.3%

Challenges * Requires expensive nickel alloys to house/contain ceramic components

Maturity * Low

Cost * Very high

Catalytic Oxidisers (CFRR)

Key Features *  Similar to a TFRR with ceramics coated with catalyst
*  Operate at lower temperatures than TFRR, hence, has lower energy footprint

Challenges *  Sensitive to particulate matter;  * Sensitive to catalyst poisoning & deactivation
*  No large-scale demo yet

Maturity *  Still at R&D 

Cost *  High
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Catalytic Oxidisers (L.T.  Convertors)

Key Features *  Operate below the auto-ignition of methane (~530oC)
*  Lower energy footprint than CFRR; * Can be configured for methanol production

Challenges *  Requires suitable, robust and cost effective catalysts

Maturity *  R&D

Cost *  Medium to High

REDOX (Chemical Looping)

Key Features *  Uses metal oxides to generate H2 in a cyclic fashion
*  Co-feeds H2 to VAM combustor to lower the ignition temperature of the mixture
*  Not sensitive to fluctuations in methane concentration
*  Self-sustaining from methane concentrations of about 0.04%

Challenges *  Requires suitable, robust and cost effective metal oxides for prolonged operation
*  No large-scale demos yet

Maturity *  R&D 

Cost * Medium (Atmospheric operation; Relatively small unit operations)

Gas Turbines (Lean GT)

Key Features *  Uses VAM as fuel rather than combustion air; * Efficiency (~30%) <  gas engines 

Challenges *  Requires methane concentration > 0.1% and, hence, a supplementary fuel
*  Leads to incomplete combustion (CO formation); * Sensitive to particles & dust
*  Causes cooling issues for methane conc. > 0.5%

Maturity *  R&D 

Cost *  Medium to high
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Gas Turbines (Catalytic Lean GT)

Key Features *  Adds a catalytic convertor to conventional GT to lower the demand for 
supplementary fuel; * Efficiency of ~30%; * CSIRO and Kawasaki variants 

Challenges *  Performance degradation for methane concentration < 0.8%
*  Sensitive to particles, dust and catalyst poisoning / deactivation

Maturity *  R&D

Cost *  Medium to High

Fuel Cells

Key Features *  Modular; * High Efficiency; * Direct VAM to electricity

Challenges *  Sensitive to impurities particularly oxygen in anodic reactions
*  Have not been used in conjunction with large volumetric gas flows

Maturity *  R&D 

Cost * High (does not benefit from economy of scale because of modular structure)

Adsorbents

Key Features *  Enriches VAM to 1% so that a thermal oxidizer can be used for destruction of VAM

Challenges *  Poor efficiency due to low surface areas available for methane separation
*  Poor selectivity for CH4; * High energy footprint in regen step (PSA, VPSA and TSA)
*  Adsorbents are sensitive to high temperatures

Maturity *  R&D (mature in the context of oil/gas industry where methane concentration > 50%)

Cost *  High
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15Membranes

Key Features *  Modular
*  Higher efficiency than adsorbent
*  Smaller than adsorbent based systems
*  Proven track record in the oil/gas and process industries for gas separation

Challenges *  Low selectivity for methane separation 
*  Concerns over high temperature operations

Maturity *  R&D

Cost *  High (does not benefit from economy of scale because of modular structure)

Bio-Convertors

Key Features *  Oxidative conversion of methane to methanol using enzymes
*  Low temperature reaction, hence, small energy footprint

Challenges *  Slow reaction rates
*  Requires complex reactors
*  Leads to oversize (large) unit operations
*  High operational costs (requires nutrients)
* Organisms must be kept under restrict operational conditions 

Maturity *  R&D 

Cost * Very High
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Australian Experience
Only a few pilot and demonstration VAM abatement projects. 
The most significant being:
•WestVAMP (BHP)
•Xstrata (Blackfield South)
•Centennial Coal, Corky’s and NSW Gov (Mandalong)
•Corky’s pilot-plant (Bloomfield)
•A single VOCSIDIZER™ unit (Appin)

WestVAMP plant; Source: Booth (BHP); 2008
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17• All plants to date in Australia have had design construction 
and/or operational issues and with the exception of 
WestVAMP (20% VAM) none have been approved to 
operate directly coupled to a mine ventilation fan. 

• There seems to be also a disjoint between process 
engineers who have design/run VAM mitigation units and  
mining personnel; something that Newcastle University and 
its partners are helping to resolve.

• The mining industry is already exposed to an often crippling 
and expensive set of environmental regulations. VAM 
mitigation increases the exposure and thereby cost. 

• The mining industry has a massive safety culture that has 
developed for good reason.  

• This culture demands technology providers to design and 
deploy systems which do not increase risk at mine sites.
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18TECHNOLOGY GAPS / ISSUES

• VAM abatement systems present specific challenges on an 
operating gassy coal mine site, particularly in terms of 
safety. 

• No VAM abatement technologies will ever be implemented 
in Australia if not safe. 

However, there is no consistent, applicable and accepted 
safety standard. This is for design, construction and 

operation

• Pricing / cost implications
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19• Key hazards are:

1.Disruption to mine air flow 

2.Blow-back, fire and explosion events

3.Dust and particulate matter leading to:

Reduced air flow (clogging)

Formation of hot spots

Sintering, corrosion and abrasion

• Need for engineering assessment and numerical modelling.

• Cost-effective heat recovery (Granex or other technologies).
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• Issues surrounding environmental approvals are becoming 

more complex and this adds to the time to develop and 
reduces NPV of projects, in many cases dramatically. 

• The key environmental issues are:
Power use; 
Noise; 
Visual amenity; 
Footprint and its impact on biodiversity and archaeology.
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21FUTURE R&D NEEDS

• Given the full effects of the carbon price will be felt by industry 
within 5 years and new projects and expansions are already 
factoring a carbon price, the urgency for R&D solutions to the 
VAM issue is critical to the future prosperity of the 
underground coal industry. 

• To have large-scale plants operating at Australian coal mines 
within 5 years we need to roll out and complete some key 
R&D tasks within the next 3 years.

• The safe implementation of thermal oxidisers appears to be 
the greatest near-term challenge for industry and an important 
R&D undertaking.
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22• In this context, monitoring, fire/explosion control measures, 
VAM capture duct and integration are areas where further 
research is warranted and urgently needed (this is the focus 
of UoN and its partners).

• This should help in establishing safety standards for the 
industry.

• In terms of energy footprint, cost, and environmental impact 
next-gen technologies (e.g. chemical looping, membrane, 
catalytic oxidation) offer greater potentials than more 
conventional systems.

• The next-gen technologies may reach sufficient maturity 
within the next 5-10 years. 

• They should be supported so that they can make the 
necessary transition from R&D to full commercialisation.
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23• Whilst there are limited 
VAM emission 
reduction or avoidance 
opportunities (e.g. 
more intensive gas 
drainage), these 
options have technical 
challenges, practical 
limitations and cost 
constraints. 

• Splitting the VAM into high and low streams may offer a new 
approach with different technologies applied to each stream. 

Source: Masaji Fujioka, JCOAL 
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24CONCLUSIONS

The industry needs to take a holistic view that looks at:

•Safety
•Engineering
•Process integration
•Environmental approvals, policy and regulations
•Environmental constraints
•International trading and Regulation 
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