A Technical Overview of VAM Mitigation Technology Platforms

FACULTY OF ENGINEERING AND BUILT ENVIRONMENT

Prof Behdad Moghtaderi

Head, Chemical Engineering, Faculty of Engineering & Built Environment Deputy-Director, Priority Research Centre for Energy, The Newcastle Institute for Energy & Resources The University of Newcastle, Australia

> Neil Alston; The University of Newcastle, Australia Lyndal Hugo; HHM Projects, Australia

OUTLINE

- Background
- VAM abatement technology status
- Technology gaps / issues
- Future R&D needs
- Conclusions

BACKGROUND

- Coal accounts for 25% of global primary energy, supplies 40% of global electricity and meets about 70% of the energy demand of the steel/aluminium industry.
- Coal is also the leading fuel in meeting the projected growth in the energy demand (93% by 2030) of emerging economies such as China and India (IEA 2009).
- Continued dependence on coal, however, requires coal production from deeper and more gassy coal seams as shallow reserves are being exhausted in many parts of the world.

- In this context coal mine methane (CMM) poses a range of safety and environmental challenges.
- LEL (5%), UEL (15%), GWP (25 over 100 years)

Source: ECE ENERGY SERIES No.31

Source: USEPA, EPA 430-R-03-002, 2003

Source: USEPA, EPA 430-R-03-002, 2003

Country	VAM (MtCO ₂ e)	%World
China	90.0	40
US	33.8	15
Ukraine	33.8	15
Australia	11.3	5
Russia	11.3	5
Total	225	80

Source: USEPA, EPA 430-R-03-002, 2003

THE UNIVERSITY OF NEWCASTLE AUSTRALIA • Capturing and using VAM is challenging because:

> Large airflows (47 - 470 m³/s)

- > Low concentrations: range 0.1-1.0% (often 0.3-0.5%)
- Variable, both flow and concentration

Example: GHG Emission at a Typical Australian Gassy Mine

CH ₄ Source	Gas Flow Rate (m ³ /y)	Average CH ₄ Conc. (%)	CH ₄ Flow Rate (m ³ /y)	Heating Value (MJ/m ³)	Emissions (MtCO ₂ e)
Drainage CMM	73.2 × 10 ⁶	75.3	55.1 × 10 ⁶	27.2	0.8
VAM (@ 210 m³/s)	58.0 × 10 ⁸	0.56	32.5 × 10 ⁶	0.2	0.5
Total			87.6 × 10 ⁶		1.3

VAM ABATEMENT TECHNOLOGY STATUS

What are the VAM Mitigation options?

Destruction

Utilisation

Source: Masaji Fujioka, JCOAL

Underlying Technology	VAM Use		Process Type	
Underlying recimology	Ancillary	Principal	Oxidation	Enrichment
Conventional Fossil Fuel-Fired Power Plants (Boilers, Kilns, Furnaces)	~		\checkmark	
Flares	\checkmark		\checkmark	
Gas Engines / Generators	\checkmark		\checkmark	
Thermal Oxidisers		✓	\checkmark	
Catalytic Oxidisers		✓	\checkmark	
REDOX Processes		✓	\checkmark	
Gas Turbines		✓	\checkmark	
Fuel Cells		✓	\checkmark	
Adsorbents		✓		\checkmark
Membranes		✓		✓
Mechanical Separators		✓		✓
Biological Convertors		\checkmark	✓	
Others (e.g. Plasmas, Pyrolysis, PO, Gasification)		~	√	

Technology Assessment		
Conventional Fossil Fuel-Fired Power Plants (Boilers, Kilns, Furnaces)		
Key Features	* Uses VAM as combustion air; * No fundamental issue	
Challenges	* Site specific engineering issues; * Requires close proximity; * No large-scale demo	
Maturity	* High	
Cost	* Low (if in close proximity)	
Flares		
Key Features	* Uses VAM as combustion air; * No fundamental issue	
Challenges	* Site specific eng issues; * Requires particulate removal; * No large-scale demo	
Maturity	* High	
Cost	* Low	
Gas Engines / Generators		
Key Features	* Uses VAM as combustion air; * No fundamental issue	
Challenges	 * Site specific eng issues; * Sensitive to particulate matter; * Requires large amounts of primary fuel (drainage gas) to operate 	
Maturity	* High	
Cost	* Medium to high	

Thermal Oxidisers (TFRR)		
Key Features	 * Uses a high thermal mass ceramic for recuperative thermal oxidation of VAM * Under ideal conditions is self sustaining for methane conc. > 0.1% * Practically though is self sustaining at methane conc. > 0.3-0.5% * Single and dual "CAN" configurations * Established track record in VOC destruction at scale similar to VAM 	
Challenges	 * Lack of large-scale experience at high temperatures associated with VAM * Safety issues (see next section for details) 	
Maturity	* Medium to High	
Cost	* High	
Thermal Oxidi	sers (Porous Burners)	
Key Features	 * Similar to a single CAN TFRR * Can process VAM with methane as low as 0.3% 	
Challenges	* Requires expensive nickel alloys to house/contain ceramic components	
Maturity	* Low	
Cost	* Very high	
Catalytic Oxid	isers (CFRR)	
Key Features	 * Similar to a TFRR with ceramics coated with catalyst * Operate at lower temperatures than TFRR, hence, has lower energy footprint 	
Challenges	 * Sensitive to particulate matter; * Sensitive to catalyst poisoning & deactivation * No large-scale demo yet 	
Maturity	* Still at R&D	1
Cost	* High	

Catalytic Oxidisers (L.T. Convertors)		
Key Features	 * Operate below the auto-ignition of methane (~530°C) * Lower energy footprint than CFRR; * Can be configured for methanol production 	
Challenges	* Requires suitable, robust and cost effective catalysts	
Maturity	* R&D	
Cost	* Medium to High	
REDOX (Chem	ical Looping)	
Key Features	 * Uses metal oxides to generate H2 in a cyclic fashion * Co-feeds H2 to VAM combustor to lower the ignition temperature of the mixture * Not sensitive to fluctuations in methane concentration * Self-sustaining from methane concentrations of about 0.04% 	
Challenges	 * Requires suitable, robust and cost effective metal oxides for prolonged operation * No large-scale demos yet 	
Maturity	* R&D	
Cost	* Medium (Atmospheric operation; Relatively small unit operations)	
Gas Turbines	(Lean GT)	
Key Features	* Uses VAM as fuel rather than combustion air; * Efficiency (~30%) < gas engines	
Challenges	 * Requires methane concentration > 0.1% and, hence, a supplementary fuel * Leads to incomplete combustion (CO formation); * Sensitive to particles & dust * Causes cooling issues for methane conc. > 0.5% 	
Maturity	* R&D	
Cost	* Medium to high	

Gas Turbines (Catalytic Lean GT)			
Key Features	* Adds a catalytic convertor to conventional GT to lower the demand for supplementary fuel; * Efficiency of ~30%; * CSIRO and Kawasaki variants		
Challenges	 * Performance degradation for methane concentration < 0.8% * Sensitive to particles, dust and catalyst poisoning / deactivation 		
Maturity	* R&D		
Cost	* Medium to High		
Fuel Cells			
Key Features	* Modular; * High Efficiency; * Direct VAM to electricity		
Challenges	 * Sensitive to impurities particularly oxygen in anodic reactions * Have not been used in conjunction with large volumetric gas flows 		
Maturity	* R&D		
Cost	* High (does not benefit from economy of scale because of modular structure)		
Adsorbents			
Key Features	* Enriches VAM to 1% so that a thermal oxidizer can be used for destruction of VAM		
Challenges	 * Poor efficiency due to low surface areas available for methane separation * Poor selectivity for CH4; * High energy footprint in regen step (PSA, VPSA and TSA) * Adsorbents are sensitive to high temperatures 		
Maturity	* R&D (mature in the context of oil/gas industry where methane concentration > 50%)		
Cost	* High		
CMMA Seminar, 4	4 Sept, 2012		

OF ĽΕ

Membranes		
Key Features	 * Modular * Higher efficiency than adsorbent * Smaller than adsorbent based systems * Proven track record in the oil/gas and process industries for gas separation 	
Challenges	 * Low selectivity for methane separation * Concerns over high temperature operations 	
Maturity	* R&D	
Cost	* High (does not benefit from economy of scale because of modular structure)	
Bio-Convertors		
Key Features	 * Oxidative conversion of methane to methanol using enzymes * Low temperature reaction, hence, small energy footprint 	
Challenges	 * Slow reaction rates * Requires complex reactors * Leads to oversize (large) unit operations * High operational costs (requires nutrients) * Organisms must be kept under restrict operational conditions 	
Maturity	* R&D	
Cost	* Very High	

Australian Experience

Only a few pilot and demonstration VAM abatement projects. The most significant being:

•WestVAMP (BHP)

•Xstrata (Blackfield South)

•Centennial Coal, Corky's and NSW Gov (Mandalong)

•Corky's pilot-plant (Bloomfield)

•A single VOCSIDIZER™ unit (Appin)

Prof. Moghtaderi CMMA Seminar, 4 Sept, 2012

THE UNIVERSITY

- All plants to date in Australia have had design construction and/or operational issues and with the exception of WestVAMP (20% VAM) none have been approved to operate directly coupled to a mine ventilation fan.
- There seems to be also a disjoint between process engineers who have design/run VAM mitigation units and mining personnel; something that Newcastle University and its partners are helping to resolve.
- The mining industry is already exposed to an often crippling and expensive set of environmental regulations. VAM mitigation increases the exposure and thereby cost.
- The mining industry has a massive safety culture that has developed for good reason.
- This culture demands technology providers to design and deploy systems which do not increase risk at mine sites.

TECHNOLOGY GAPS / ISSUES

- VAM abatement systems present specific challenges on an operating gassy coal mine site, particularly in terms of safety.
- No VAM abatement technologies will ever be implemented in Australia if not safe.

However, there is no consistent, applicable and accepted safety standard. This is for design, construction and operation

Pricing / cost implications

- Key hazards are:
- 1.Disruption to mine air flow
- 2.Blow-back, fire and explosion events
- 3. Dust and particulate matter leading to:
- Reduced air flow (clogging)
- Formation of hot spots
- Sintering, corrosion and abrasion
- Need for engineering assessment and numerical modelling.
- Cost-effective heat recovery (Granex or other technologies).

- Issues surrounding environmental approvals are becoming more complex and this adds to the time to develop and reduces NPV of projects, in many cases dramatically.
- The key environmental issues are:
- ≻Power use;
- ≻Noise;
- Visual amenity;
- Footprint and its impact on biodiversity and archaeology.

FUTURE R&D NEEDS

- Given the full effects of the carbon price will be felt by industry within 5 years and new projects and expansions are already factoring a carbon price, the urgency for R&D solutions to the VAM issue is critical to the future prosperity of the underground coal industry.
- To have large-scale plants operating at Australian coal mines within 5 years we need to roll out and complete some key R&D tasks within the next 3 years.
- The safe implementation of thermal oxidisers appears to be the greatest near-term challenge for industry and an important R&D undertaking.

- In this context, monitoring, fire/explosion control measures, VAM capture duct and integration are areas where further research is warranted and urgently needed (this is the focus of UoN and its partners).
- This should help in establishing safety standards for the industry.
- In terms of energy footprint, cost, and environmental impact next-gen technologies (e.g. chemical looping, membrane, catalytic oxidation) offer greater potentials than more conventional systems.
- The next-gen technologies may reach sufficient maturity within the next 5-10 years.
- They should be supported so that they can make the necessary transition from R&D to full commercialisation.

 Whilst there are limited VAM emission reduction or avoidance opportunities (e.g. more intensive gas drainage), these options have technical challenges, practical limitations and cost constraints.

Source: Masaji Fujioka, JCOAL

• Splitting the VAM into high and low streams may offer a new approach with different technologies applied to each stream.

The industry needs to take a holistic view that looks at:

- •Safety
- •Engineering
- Process integration
- •Environmental approvals, policy and regulations
- Environmental constraints
- International trading and Regulation

www.newcastle.edu.au

Questions

CRICOS Provider 00109J | www.newcastle.edu.au

Prof. Moghtaderi CMMA Seminar, 4 Sept, 2012

