

'Gas Capture Maximisation' approach for avoiding methane emissions in ventilation air

Rao Balusu

EARTH SCIENCE AND RESOURCE ENGINEERING

www.csiro.au

Presentation Outline

- Introduction
- Fugitive emissions from underground coal mining
- Ventilation strategies for VAM mitigation
- Current gas drainage scenario and challenges
- Gas capture maximisation strategies
- GHG friendly mine scenario
- Conclusions

Introduction

- Australian coal industry highly gassy mining conditions
 - Coal seams gas contents ranges from < 1.0 m³/t to about 18 m³/t
 - Specific gas emissions (SGE) up to 20 m³/t of coal production (to 35 m³/t)
 - Goaf gas emissions generally from 300 l/s to 3,000 l/s (even to 8,000 l/s)
- Complex mining conditions
 - Thick and multiple coal seams (& strata gas)
 - Depths approaching 600m, low permeability, structures, ..etc
 - Mines in remote areas, surface/environmental constraints, ..etc
- Coal seams are also prone to spontaneous combustion
 - Complicates goaf gas drainage issue (requires balancing/optimisation)

Fugitive emissions from UG coal mining

- UG fugitive emissions ~16 to 17 Mt CO₂-e (Total ~28 Mt)
- Total VAM around 30 m³/s CH₄ (13 to 14 Mt CO₂-e)
- Total drained gas ~ 20 m³/s CH₄
 - Drained gas ~ around 40% of total (20 m³/s out of total 50 m³/s)
 - 75% of pre-drained gas used for Power generation and in Flares

Gas emission rates and relationships

- CO₂-e and methane (CH₄) flow rates
 - $1 \text{ m}^3/\text{s CH}_4 \sim 0.45 \text{ Mt/y CO}_2\text{-e}$ (10 Mt CO₂-e ~ 22 m³/s)
- CH₄ emissions and carbon charge
 - At A\$23/t CO_2 -e, 1 m³/s (1,000 l/s) emissions ~ \$10 M/year

Coal mine fugitive emissions intensity

Emissions Intensity Figure by Australian National Greenhouse Accounts

- For example, gassy underground mine producing 5 Mt with intensity of 0.3 total emissions around 1.5 Mt of CO_2 -e, which equates to \$35 M/yr (at cost of @\$23/t)
- From this emissions intensity figure, we can see that
 - CO_2 -e charge for a number of UG mines will be > \$10 M/y (for some mines over \$25 M/y)
 - Other mines will also face significant carbon charges
- Need to reduce fugitive emissions significantly from UG coal mines

Ventilation Air Methane (VAM) – in Australia

- Total VAM emissions over 30 m³/s (out of total 50 m³/s from UG mines)
- As most of the drained gas is utilised/flared, VAM emissions represents 80-85% of the total fugitive emissions from UG mines
- Low CH₄% in VAM presents a challenge for utilisation or mitigation

VAM mitigation – Ventilation Options

- Example: LW mine 330 m³/s @ 0.55% $CH_4 = 0.8 Mt CO_2$ -e
- To minimise these emissions, options include:
 - Mitigating the entire main ventilation VAM with > 0.3% CH₄
 - Ventilation modification and targeting only part of vent system at higher CH₄%
- LW airflow is typically around 30% of mine ventilation, but may contain up to 70% of the gas reporting to main ventilation VAM

VAM mitigation – Ventilation options (1)

Targeting LW return/bleeder for VAM mitigation optimisation

VAM mitigation – Ventilation options (2)

- LW bleeder gas up to 2% CH₄
- Gas from adjacent goafs
- Alternative ventilation layouts
- Peripheral/split vent systems
- Changes in mine design/layouts
- Safety issues to be considered

Bleeder ventilation of longwalls and goaf bleeders – VAM mitigation

VAM mitigation – Key points

- VAM is 60% of UG CMM emissions and represents 80-85% fugitive emissions
- VAM mitigation still an issue and difficult to mitigate all VAM emissions
- Targeting only part of ventilation at higher CH₄%
- Modifying mine ventilation to increase CH₄% in VAM for mitigation
- Increasing gas capture and using some gas for VAM mitigation
- Increasing 'mine gas capture' to reduce total VAM emissions best strategy
- Gas drainage strategies/options to reduce VAM/fugitive emissions

Current gas drainage scenario

- Total gas drained ~ 20 m³/s CH₄ (and 3 m³/s CO₂)
 - Pre-drainage gas $\sim 12 \text{ m}^3/\text{s}$ and goaf drainage $\sim 11 \text{ m}^3/\text{s}$
 - Drained gas $\sim 40\%$ of total 50 m³/s (VAM ~ 30 m³/s CH4)
- Total 14 mines using gas drainage (pre-drainage and/or goaf drainage)
- Pre-drainage for outburst prevention only in working seam
- Goaf drainage to control gas in longwall panels
- Gas drainage main objectives Gas control and Outburst prevention – not necessarily 'Gas Capture Maximisation' at the moment

Typical gas drainage in mines

LW mines methane emissions and capture efficiency

Future challenges – in gas control

Expected increase in goaf gas emissions with coal production

- Mines getting deeper high gas & less perm
- Goaf gas drainage surface restrictions
- Multiple seams mining goaf drainage issue
- Thick seam extractions –more gas emissions
- Sponcom issues vs goaf gas drainage rates
- Remote mines (and less local demand) issue for gas capture maximisation
- Safety issues to capture CH₄ at < 30%

- Current CMM capture (both pre-drainage & goaf drainage) from all coal mines (around 12 to 14 mines) $\sim 20 \text{ m}^3/\text{s} = 20,000 \text{ l/s}$ only
- In future, we get that much gas flow from just a few mines & more challenges

Gas drainage practices and approach

- Gas capture efficiency ~ 40% to 50% (highest 75%)
- Need to improve gas drainage efficiencies significantly
- Need to introduce additional gas drainage in mines even if not necessary for statutory compliance purposes
 - For example, \$10M/y to capture additional 1,000 l/s may be cost effective
- Current perceptions of 'more gas drainage results in more goaf gas emissions' need to change
- Need to change from current "Gas Control" approach to "Gas Capture Maximisation" approach

Gas Capture – UG goaf drainage in China & UK

- Gas drainage focus on near face active zone (in front and close behind)
- Note: Capture efficiency of 50% achieved even at low flow rates
- Purity is an issue some times < 30% CH₄

Gas Capture – Unconventional hole patterns

Gas Capture – Alternative post-drainage

Gas Capture – Other techniques

• Underground patterns +

- MRD standard and reamed
- Petroleum industry rig capabilities
- Hydrofracture multiple completion
- Nitrogen flushing
- Pre-drainage 3 to 10 years ahead

Gas Capture Maximisation (Pre-drainage)

- SIS holes highly successful but, WS only & 1 2 years ahead
 - SIS holes to be used for drainage of upper seams
 - SIS drainage to be implemented 3 − 10 years ahead
- Gas drainage to be carried out, wherever feasible
 - when capturing additional 100's l/s gas costs < CO $_2$ -e charge. For example, capturing additional 1,000 l/s with \$10M/y is feasible
- Additional UG gas pre-drainage (-OR- reduced hole spacing)
- Hydrofrac/stimulation to improve drainage rates & efficiency
- Extensive CBM operations ahead of mining

Gas Capture Maximisation (Post-drainage)

- Goaf gas drainage to be increased from 40% to 80%
 - Deep goaf gas drainage strategies to be implemented, even if not immediately effecting LW return gas levels
 - Gas drainage from overlying and underlying seams
- Both surface and UG goaf gas drainage strategies
- Goaf gas drainage even in low to medium gassy mines
- Trying to achieve 0.3-0.4% CH₄ in LW return (rather than <1%)
- Mine design/vent changes to maximise gas capture
- Gas capture maximisation practices not widely used
- Increased gas capture reduces VAM & fugitive emissions

Gas Capture Maximisation – Potential Strategies (1)

- Very low gas emission mines (GRS < 30 m³/m², WS gas < 3 m³/t)
 - Conventional pre-drainage may not be feasible
 - Consider sealed area goaf drainage, if significant
- Low gas emission mines (30 < GRS < 50 m³/m², 3 < WS < 5 m³/t)
 - Viability of stimulated pre-drainage to be considered
 - Consider goaf drainage of active and sealed areas
- Medium gas emission mines (50 < GRS < 80 m³/m², WS < 7 m³/t)
 - Consider pre-drainage of both working and other seams
 - Goaf drainage of active and sealed areas required
 - VAM mitigation with or without split ventilation

Gas Capture Maximisation – Potential Strategies (2)

- High gas emission mines (80 < GRS < 110 m³/m², WS > outburst)
 - Pre-drainage required and consider increased intensity
 - Pre-drainage of non-working seams too
 - Goaf and sealed area drainage required and increased efficiency
 - VAM mitigation required for part or all (with or without split vent)
 - Additional gas capture strategies to be considered
- Very high gas emission mines (GRS > 110 m³/m², WS > outburst)
 - All of above +
 - Gas reservoir stimulation techniques
 - Pre-drainage of any interburden/roof gas reservoir strata

GHG Friendly Mine – Ideal Scenario (1)

- Gas drainage not just for 'gas control', but for 'gas capture'
- Mine/Vent design allows max gas capture & minimises VAM
- Increased pre-drainage of all coal seams (even when not required)
- Pre-drainage 3 to 10 years ahead
- Active/sealed/deep goaf drainage (even when not required)
- Goaf gas capture even at low flow rates with low CH₄
- Introducing alternative strategies to increase gas capture
- All captured gas is used for power generation or flared

GHG Friendly Mine – Ideal Scenario (2)

Avoiding methane emissions in ventilation air

LW gas emissions in m³/s at 3.0Mtpy – ideal gas capture scenario

Typical gas drainage scenario

Gas Capture Maximisation – Research Requirements

- Improved gas reservoir characterisation & Q3 determination
- Gas content measurement of all seams after LW retreat
- Gas capture maximisation strategies
- Mine design/layout optimisation for increased gas capture
- Vent design changes for optimum VAM mitigation
- Gas capture in low gassy mines & safe systems for low CH₄% drainage
- Gas reservoir stimulation techniques
- Accurate measurement of air flows and fugitive emissions

Conclusions

- Fugitive emissions > 27 Mt CO_2 -e (impact on UG mines is large)
- Current gas drainage practice for outburst and gas control
- VAM 30 m³/s out of 50 m³/s from UG mines (~80-85% fugitive emissions)
- The concept of VAM mitigation alone should be the main focus, as 85% fugitive emissions are VAM requires a change in approach
- Scope to reduce VAM significantly, through improved gas capture
- Requires a fundamental shift in our approach (from "Gas Control" to "Gas Capture Maximisation") to achieve "near zero emissions"

Thank you

Dr Rao Balusu Mining Research Group Leader

- t +61 7 3327 4614
- e rao.balusu@csiro.au
- w www.csiro.au

