Methane to Markets

Anaerobic Digestion of Agro-Industrial Wastes: Categories, Characteristics, Technologies, Emissions and Methane Production Potential

Kurt Roos U.S. Environmental Protection Agency Team Leader, Agricultural Methane Programs

> 28 January 2009 Monterrey, Mexico

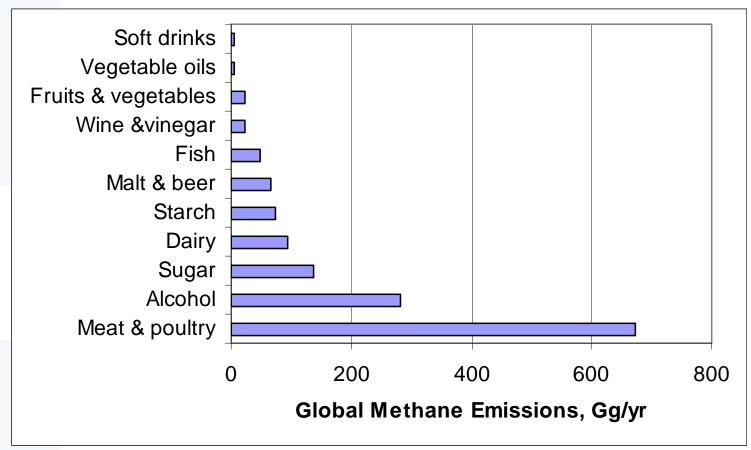
Overview

- Background
- Agro-Industrial Waste Overview
 - Current Emissions and Waste Disposal Practices
 - Potential Methane Production
- Potentially Applicable Processes
- Project Development Issues
- Conclusions

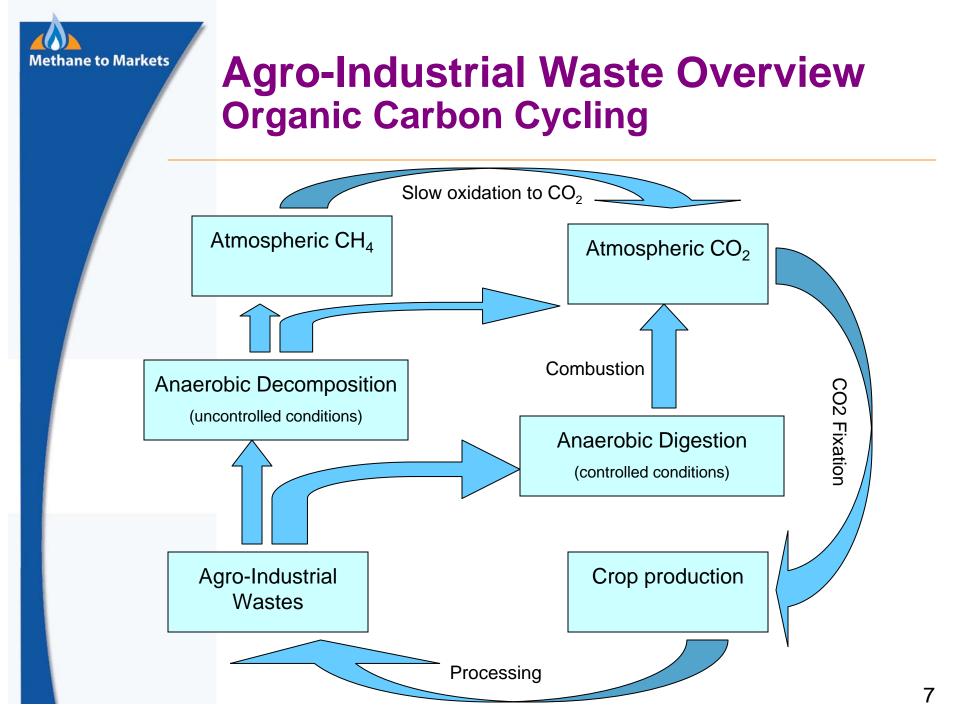
Background

- The Methane to Markets (M2M) Agriculture Subcommittee was created to promote anaerobic digestion (AD) to reduce methane emissions from livestock manure.
- In November 2008, the M2M Agriculture Subcommittee proposed to the Steering Committee that agro-industrial wastes be added to the scope of the Subcommittee's work.
- The Steering Committee supported this proposal, and the Subcommittee is now working to include agro-industrial waste.

Agro-Industrial Waste Overview


- Agro-industrial wastes can be organized into the following categories:
 - Food processing wastes
 - Energy crops and biofuel production wastes
 - Crop residues
- These categories also contribute to the organic fraction of municipal solid waste which are also an emissions source

Agro-Industrial Waste Overview Disposal Practices


Sector	Region	% of Wastewater	
		Untreated Discharge	On-site Anaerobic Treatment
Meat, poultry, dairy, & fish processing	Africa	60	34
	Asia (except Japan)	70	22
	Eastern Europe	50	23
	Latin America	50	32
Fruit and vegetable processing	Africa	70	6
	Asia (except Japan)	70	5
	Eastern Europe	50	1
	Latin America	60	5
Alcohol, beer, wine, vegetable oil, sugar, and starch	Africa	60	17
	Asia (except Japan)	60	11
	Eastern Europe	20	8
	Latin America	20	13

Agro-Industrial Waste Overview Current Global CH₄ Emissions

From Doorn et al., 1997

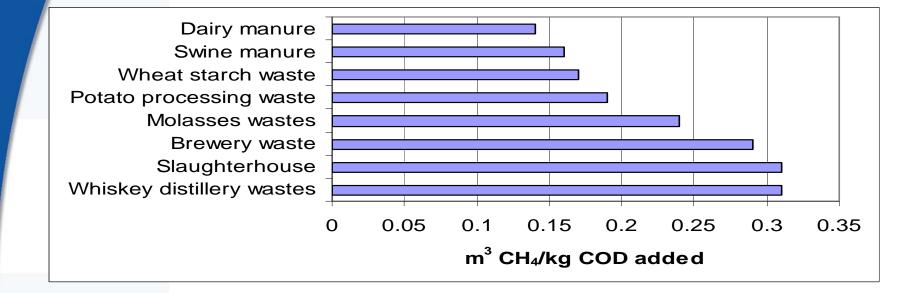
Agro-Industrial Waste Overview Potential for AD

- The organic fraction of Agro-industrial wastes typically is more readily biodegradable than manure. Thus, greater reductions in biochemical oxygen demand (BOD), chemical oxygen demand (COD), and volatile solids (VS) during AD can be realized.
- The higher readily biodegradable fraction of agroindustrial wastes translates directly into higher methane production potential.

Food Processing Wastes Greatest Potential for AD

Of the 4 categories of agro-industrial wastes, food processing wastes have the greatest potential for methane production.

- Typically are high strength with BOD₅ concentrations of at least an order of magnitude higher than domestic wastewater.
- Storage or disposal practices may result in methane emissions or water quality impairment or both.
- AD could decrease methane emissions while simultaneously improve water quality, human health and provide a renewable source of energy.
- On-site use of the methane captured as a fuel generally is high.
- Use of AD as a pre-treatment process will reduce wastewater treatment costs and energy requirements



Food Processing Wastes: Overview

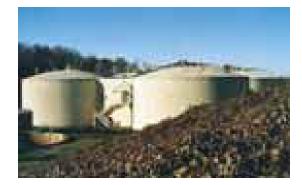
- Food processing wastes vary greatly so they are difficult to characterize.
- The volumes and concentrations of the wastes vary based on industry, process, and location.
- These wastes may be placed into the following broad categories, which can be generalized as having similar characteristics:
 - Fats and oils
 - Proteins
 - Carbohydrates

Agro-Industrial Waste Overview Comparative Methane Yields

Agro-Industrial Waste Overview Carbon Chains Drive Methane Yields

- AD of the following food processing waste compounds may be represented with the simplified equations below.
 - Carbohydrates (sugars and starches) $C_6H_{12}O_6 + H_20 \rightarrow 3CO_2 + 3CH_4$
 - Proteins
 - $C_{10}H_{20}O_6N_2 + 3H_20 \rightarrow 5.5CH_4 + 4.5CO_2 + 2NH_3$
 - − Fats and oils (triglycerides) $C_{54}H_{106}O_6 + 28 H_20 \rightarrow 40CH_4 + 17CO_2$

Agro-Industrial Waste Overview Controlling Methane Production Factors


Variables Affecting the Rate of Methane Production during Anaerobic Digestion

- Waste physical and chemical characteristics
 - Pickling, crusting, floating, solidification, settling, nutrient deficiencies
 - Livestock waste digesters are excellent buffers for chemical impacts on microbial populations
- Volumetric loading rate or retention time, and
- Temperature.

Potentially Applicable Processes

- Suspended growth
 - Complete mix
 - Anaerobic contact
 - Anaerobic sequencing batch reactor

- Anaerobic sludge blanket
 - Upflow (USAB)
 - Baffled reactor (ABR)
 - Migrating blanket reactor (AMBR)

Potentially Applicable Processes (continued)

- Attached growth
 - Upflow packed bed
 - Upflow expanded bed
 - Upflow fluidized bed
 - Downflow
- Other processesCovered lagoon

Food Processing Wastes: Examples of Utilization in the US

- Slaughterhouse wastewater (pork)
 - Smithfield Foods
- Milk processing wastewaters
 Kraft Foods
- Winery wastewaters
 - Canandaigua Winery
- Brewery Wastes
 - Coors Beer

Project Development Issues

- Availability of:
 - Institutional (national and local government) support
 - <u>Technical Capacity</u>
 - Design, Equipment, and Service
 - <u>Capital</u> for digester construction and biogas utilization
 - <u>Reliable supply</u> of waste or wastes <u>without</u> seasonal variation, and
 - <u>Demand</u> for captured methane as a fuel.
- Similar issues also impact deployment of livestock waste digesters

Resource Assessments are Critical First Steps

- M2M supporting Resource Assessments (RA's) as strategic tool for country implementation plans and next steps
- RA's identify appropriate sectors for anaerobic digestion projects that:
 - Have sufficient scale to be economically viable,
 - Can realize significant value from the captured methane as a fuel, and
 - Have potential to significantly reduce methane emissions.
- M2M supporting RA development in a number of participating Latin and Asian countries

Summary and Conclusions

- AD of agro-industrial wastes has the potential of:
 - Reducing methane emissions
 - Providing a renewable source of energy
 - Improving water quality and Human Health
- Food Processing wastes show the most potential for AD followed by wastes from biofuel production
- Technologies exist
 - Some wastes will require co-digestion with another waste such as livestock manure
- Resource Assessments are strategic tools to develop effective implementation plans
 - M2M supporting a number participating countries