Methane to Markets

The Kindersley Centre, Berkshire

November 29th & 30th 2006

Anaerobic Digestion: a New Opportunity for Agriculture

Sir Ben Gill CBE MA(Cantab)

Director,

Why are we here?

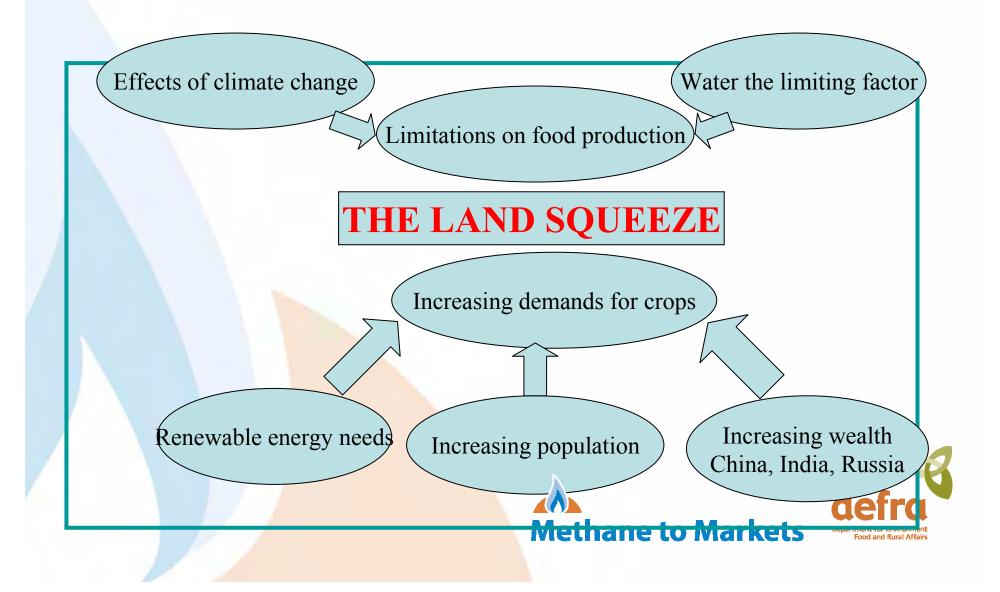
Energy Security

- North Sea production of oil and gas in decline
- Europe increasingly dependent on "Eastern gas supplies"
- Finite World oil reserves currently estimated at 5.25x10¹² barrels
- Currently at or close to peak world oil production
- Tar Sands currently represent around 2/3rds of total oil reserves found principally in
 - Canada: Athabasca Tar Sands 1.7 x 10¹² barrels
 - Venezuelan Ormoco Tar Sands 1.8 x 10¹² barrels

Environmental Extraction Cost

- Canada they cover 140,000 Kms²
- High water useage to extract
- High energy cost to extract

Conventional oil reserves 1.75 x 10¹² barrels



Why are we here?

- Increasing concerns about the sustainability of our life style
 - Moving from "3 planet" earth to "1 planet" earth
 - Increasing questions about the carbon footprint of all that we do
- At best static and likely reducing amount of available land for agriculture
- Increasing demand from China and the Asian economies for
 - Food
 - Raw materials
 - Energy

Demand For Land

Why are we here?

Climate Change

- Differential effects around the world
- Changed water supply patterns
 - •Water increasingly the limiting factor in ALL that we do
 - •Severe droughts in many parts of the world
- Rising temperatures changing the environment
 Different pest and disease challenges
 Rising Sea Levels
- Farmers need a sustainable environment in which to farm and grow crops
- Causes of Climate Change: Greenhouse gases
 - Carbon dioxide
 - Oxides of nitrogen
 - Methane

The consequence of this is that

- Not only do we need to think of conserving oil and gas supplies for prudent reasons BUT also
- We need to reduce the greenhouse gases that we are producing arising from their combustion
- And find ways that can replace their use in a sustainable manner
- Which suggests that we need to be holistic in our thinking about the issues
- There is NO ONE single solution but rather we need to draw together the various strands
- And for today we need to remember that methane is 23 X as polluting as carbon dioxide
 - So where does it come from?

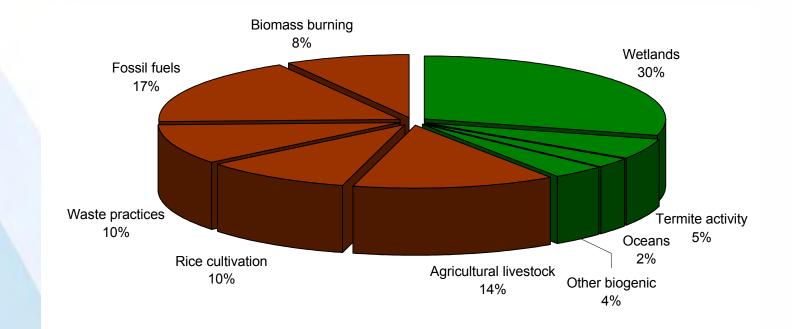
Methane from Coal Mining & Forest Fires

Methane to Markets

Methane from Waste



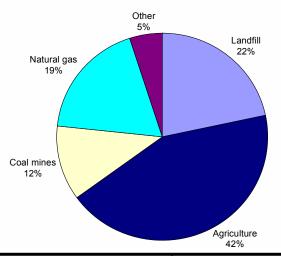
Methane from food production



Methane Emissions

- Methane was responsible for 10% of UK GHG emissions in 1990
- But has a shorter life expectancy at 12 years than CO₂
- Captured CH₄ can be a valuable energy source
- There is no current specific policy aimed at reducing methane emissions
- There is a need for an holistic approach to methane control
- Reducing methane emissions can be more cost-effective and climate change mitigating than reducing CO₂
- Reducing methane emissions now will be far more effective than later
- So what are the levels of methane emissions?

Global Sources of Methane



- 598 Mt CH₄ emitted to atmosphere each year
- 576 Mt CH₄ absorbed by sinks
- A reduction in emissions of only 4% would lead to stabilised atmospheric concentrations

Methane to Markets

Food and Rural Affairs

Methane in the UK

Mt CH ₄	1990	2002	% decrease
Landfill	1.17	0.46	61%
Agriculture	1.03	0.91	13%
Gas Pipe lines	0.51	0.39	24%
Coal Mines	0.82	0.25	70%
Other	0.13	0.10	22%
Total emissions	3.66	2.11	43%

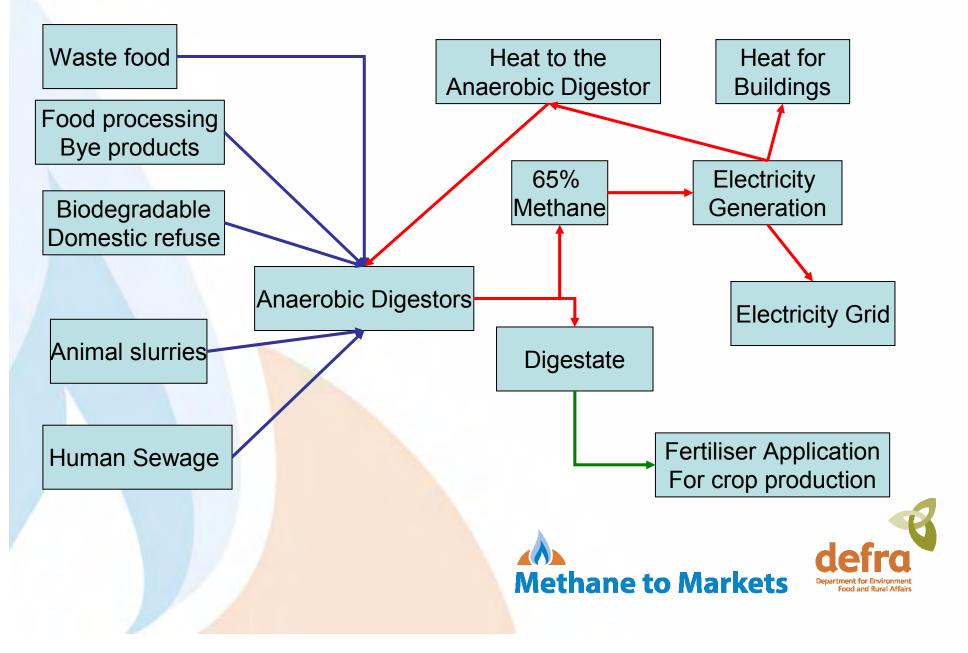
Methane to Markets

Department for Environment Food and Rural Affairs

How does this relate to UK Agriculture?

90% from livestock emissions

- Limited reduction possibilities from nutrition and breeding
- 10% manure management
 - Conversion by the use of anaerobic digestors using either
 - Slurry alone or
 - Slurry and food waste mixed



Benefits of Anaerobic digestion

- Larger percentage of CH₄ recovered than from other methods such as landfill (between 10% and 50% more)
- Gas yields are more regular and sustainable than land fill and usually around 65% methane
- Much reduced time for the waste to fully degrade
 - A few decades to a few weeks
 - Using waste heat to raise the temperature of the digestor to 60°C can reduce the digestion period from 60 to 20 days
- There is reduced potential contamination/ pollution from the run off
- Removal of noxious odours and much lower levels of pathogens
- Increased availability (and value) of the digestate as the available Nitrogen is increased from <50% to c. 90%

Anaerobic Digestion flow chart

So what are the barriers to wider exploitation of Anaerobic Digestion?

- Ignorance
 - Of the potential
 - By the local authorities
 - Of the local populations
 - By the construction industry
- Bureaucracy
 - Need to establish an agreed digestate standard
 - Supermarket resistance to use of the digestate
 - Food & Feed legislation levels
 - Favourable appreciation by the planning community

What does this mean for Agriculture and Farmers?

- Removes risk experienced for the last 50 years of all their 'eggs in one basket': food production
 - Even more important with the removal of classic intervention support methods
 - Creating a more sustainable and balanced model
- Removes a potential problem of sustainable disposal of manures and biodegradable waste
- Creates an alternative income stream
- Produces a valuable fertiliser which is based on a renewable source
- Produces renewable energy

CONCLUSIONS

- Anaerobic Digestion offers real opportunities for a sustainable use of ALL agricultural and biodegradable waste to produce a valuable fertiliser and an energy valuable gas
- There is a significant need for all to learn from one another's experiences to speed up the optimal development and use of anaerobic digestion.
- UK is currently lagging behind other EU countries and needs to learn from others
- Removing IGNORANCE at all levels is a critical ingredient in achieving the uptake
- This seminar has an important role in achieving this

