Methane to Markets

The Kindersley Centre, Berkshire

November 29th & 30th 2006

Mixed Waste Opportunities in AD in Canada

Carlos M. Monreal

Research Scientist/Science Advisor Environmental Health Agriculture and Agri-Food Canada

defra

Department for Environment

Food and Rural Affairs

AD in the Past

- From the early 1970's to mid 1980's
 - Annotated bibliography of farm animal wastes, no farm-scale AD
 - Guidelines for AD: Methane gas production from animal wastes & Biogas production from animal manures
 - R&D on the chemistry and microbiology of AD by NRC in labs and pilot plants
 - Federal Government Support Programs:
 - Development and Demonstration of Resource and Energy Conservation
 Technology to develop full scale operating model EC
 - Energy Research and Development in Agriculture to support R&D at farms AAFC

Issues with Early AD Systems

- Inadequate mixing solids settling, scum formation
- Corrosion of components
- Plugging and freezing of manure and gas lines
- Design deficiencies accessibility to components difficult, retrofitting was not practical
- Appropriate equipment and expertise not available
- Limited payback

Present Federal Activities in AD

Federal Government Departments actively promote the use of AD including: Natural Resources Canada (NRCan), Agriculture and Agri-Food Canada (AAFC), Environment Canada (EC), Industry Canada (IC), National Research Council (NRC) Programs which support the development of AD in Canada:

- Energy Co-Generation of Agricultural and Municipal Wastes (AAFC)
- Environmental Technologies Assessment for Agriculture (AAFC)
- Technology Early Action Measure (NRCan)
- Industrial Research Assistance Program (NRC)
- Sustainable Development Technology
 Canada
- Green Municipal Fund (FCM)

Present Federal Activities on AD

NRCan actively promotes the use of AD through R&D

- Feedstock recipes for farm scale digesters
- Digestion of source separated organics from MSW
- Opportunities for energy use and production at MWW plants
- Digestion of Pulp and Paper wastes
- Testing of biogas appliances such as micro turbines and stirling engines

Present AD Activities in Ontario

m1

- Government of Ontario Opportunities:
 - Standard Offer Program
 - (11c/kWh for biomass base power, +3.52 c/kWh for "peak power")
 - Mixing manures with off-farm co-substrates (Exempting on-farm AD systems from Certificates of Approval)
 - Limit of 5000 cu.m of waste/year
 - (resource utilization instead of waste disposal)

Growing the Margins Energy Conference: <u>www.gtmconf.ca</u> April 11-14, 2007 London, Ontario

CI	i	Ы	0	7
9		u	C	

m1 monrealc, 08/11/2006

Cattle: 36,000 cattle in feedlot Manure processed: 105 m3/d Digester capacity: 1800 m3 x2 Biogas: 8400 m3/d

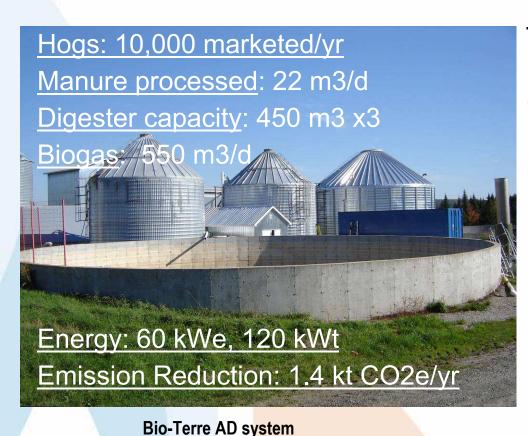
Energy: 760 kWe, 974 kWt Emission Reduction: 6.3 kt CO2e/yr

IMUS AD system

Himark Renewables Inc. - Alberta

to develop and commercialize an Integrated Manure Utilization System (IMUS) to manage animal manure using **thermophilic** anaerobic digestion technology to generate biogas for electrical and heat energy, and to produce organic fertilizer and reusable water by recovery and concentration of nutrients in the digested beef manure.

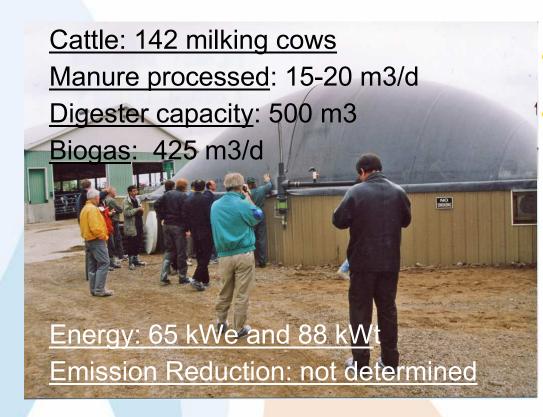
Methane to Markets



Clear Green Inc. - Saskatchewan

To demonstrate a mesophilic anaerobic digester (AD) system for hog manure coupled with a novel nutrient separation and recovery technology
To produce biogas for energy cogeneration in a micro turbine owned and operated by SaskPower

Methane to Markets



Bio-Terre Systems Inc. - Quebec

To develop a market-ready system
for heat and electrical energy
cogeneration from hog manure
using a **psychrophilic** (23 degrees
Celsius) anaerobic digestion for
biogas production in a sequencing
batch reactor system.

Klaesi Brothers Farm - Ontario

- To demonstrate a mesophilic AD system for cow manure
 To produce biogas for energy cogeneration in a 100 Hp Perkins dual diesel/biogas engine capable of generating electrical and
 - thermal energies

Barriers for Adoption of AD

Technical

- temperature control, mixing, gas handling & utilization
- adaptation of AD system components to ILOs
- utilization of thermal E (Greenhouses, Ethanol plants)
- need technology to produce high grade biofertilizer

Policy/Regulatory/Infrastructure

- lack of domestic carbon trading system
 - new provincial rules and guidelines
 - insurance, zoning, grid connection
 - transmission limitations (areas with transmission grid limitations)

Methane to Markets

Ontario requires 250 kW minimum production to access power grid

Barriers for Adoption of AD

Economic

- high initial capital investment for AD systems
- find new markets for biofertilizer & new bioproducts
- economics of pilot plants being determined
 - (price and buyer for electricity exported into power grid)
 - (carbon trading system)
 - (other stimulating policies and programs)

Opportunities for future systems

- Producing renewable energy and biofuels
- Reducing GHG emissions
- Incorporation of off-farm sourced organic residues
- Reducing odours, pathogens and waste volume
- Improve the fertilizer value of livestock manures
- Integration with other technologies to produce other biofuels, bioproducts and new conversion processes

Acknowledgements

- Climate Change Action Plan 2000 Program
- NRCan Jody Barclay
- OMAFRA Jake DeBruyn
- AAFC Dr. R. Desjardins
- Consultant Dr. Naveen Patni

Thank you

