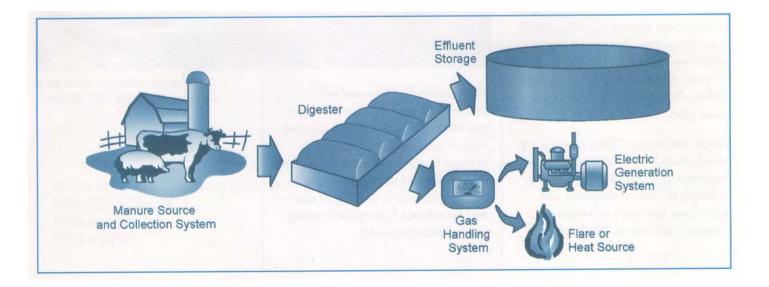


AD in Agriculture a Global Perspective

Kurt F. Roos AgSTAR Program U.S. Environmental Protection Agency

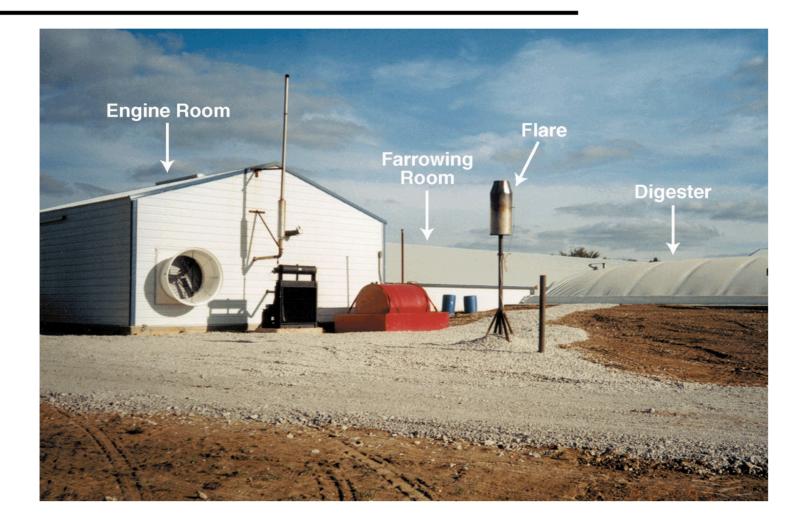
Presentation Overview


- What are anaerobic digesters?
- What makes them work?
- What kinds of wastes can be used?
- What kinds of systems are there?
- Where do they make sense?
- What benefits do they offer?
- What types of project approaches are there?
- What do they cost?
- Why we don't see more of this in some parts of the world?

What are Anaerobic Digesters?

Biological treatment/stabilization systems applicable to liquid, slurry, and semi-solid waste that collect and combust off-gases.

Digesters separate manure treatment from storage functions which can result in lower initial installation costs for new or expanding farms



Why Anaerobic Digesters?

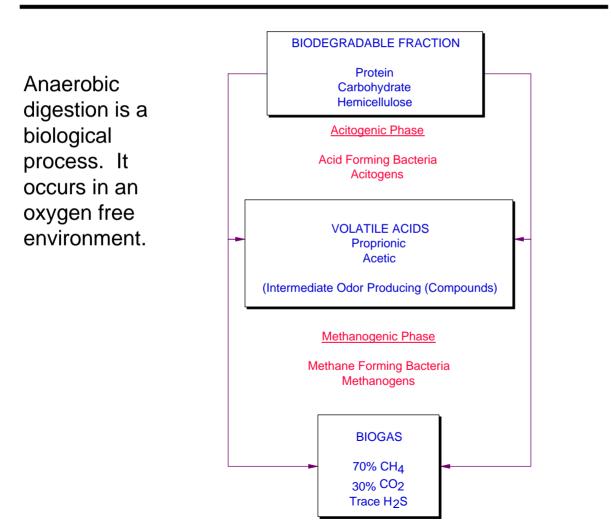
- 1) Offer Air Quality benefits
 - -Control odors from storage and field application
 - -Reduces Greenhouse gases (methane)
 - -Controls other emissions (H₂S, ammonia)
- 2) Offer Water Quality benefits
 - -Stabilize manure organics (BOD)
 - -Significantly reduce pathogens
 - -Provide nutrient management predictability and flexibility
- 3) Offer return on Investment......Energy Revenues

Typical Digester Configuration

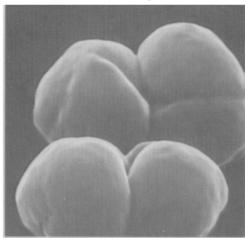
Environmental Retrofit

Retrofit Plan

Before



After

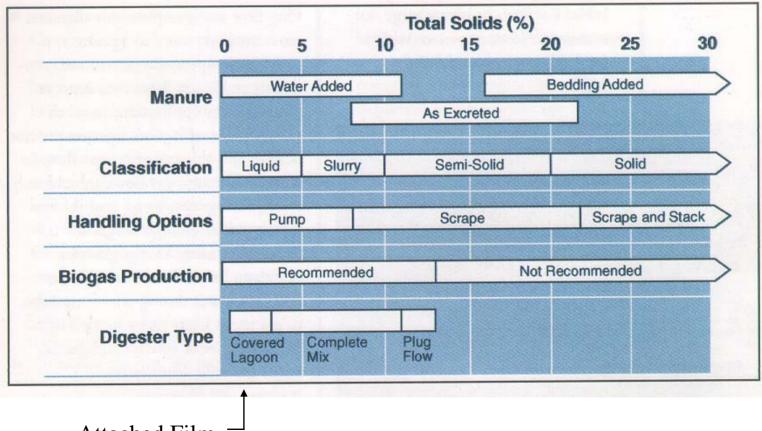


What Makes Digesters work?

Methanogens

Suitability of Waste Materials

Туре	Biodegradability	Fraction Digested
Blood, slaughter house wastes, greases, whey	Very high	>90%
Pig waste	Moderate	@55-65%
Dairy waste	Moderate	@30-40%
Broiler waste	Low	@10-15%
Straw	Very low	<5%


All values are approximate

Some substrates can increase methane emissions depending on baseline

Digester Selection

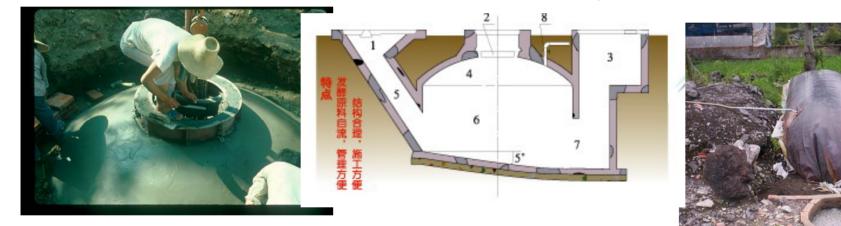
- Hog and Dairy industry constitute >90% of market potential

Attached Film

Unheated Digesters

Covered Lagoon Digester and Attached Media <2% TS

Bank-to-Bank Cover

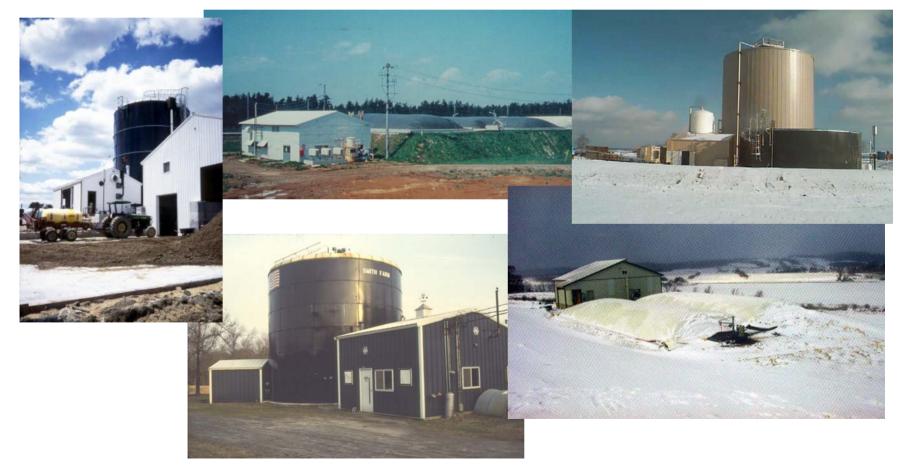

Attached Media

More Unheated Digesters

Small - Intermediate Scale Digesters

Heated Digesters

Plug Flow Digesters 11-14% TS - Dairy Manure Only



Heated Digesters

Mixed Digesters (5-10% TS)

Heated Digesters

Insulated Covered Mixed Lagoon Digester (5-10% TS)

Gas Use: Electric

Recip. Engines 40-150kW

Engine Controller

11

0

.

.

Net Metering

More Engines

Gas Use: Heat

Boilers

Forced Air

Hot Water Storage

Hot Water Use

Gas Use: Flares

Odor Control and Greenhouse Gas Mitigation


Other Gas Use Options

Project Types

- <u>On-Farm or Farm Scale</u>: System is owned and operated by farm owner/manager
- <u>Regional or Centralized Digesters</u>: Off farm management and operation with a third party
 - Ideally located at a large energy (electric or heat) consuming source or interconnection point (feed mills or utility substation)

Methane Emission Baselines

Factors effecting methane emissions:

- 1) Manure type
- 2) Manure handling (liquid, slurry, semi-solid, solid)
- 3) Temperature and time

AMWS Systems and Methane Emission Factor by Climate Type									
		Manure Management System							
Climate	Lagoon	Liquid and Slurry	Solid Storage	Dry lot	Pit <1 month	Pit >1 month	Daily Spread	Digester	Other
Cool	90%	10%	1%	1%	5%	10%	0.10%	10%	1%
Temperate	90%	35%	1.50%	1.50%	18%	35%	0.50%	10%	1%
Warm	90%	65%	2%	5%	33%	65%	1%	10%	1%

Calculating Methane Reductions

Example: 500 cow dairy with varying baseline waste management systems in a warm climate

	Waste System Types		
	Daily Spread	Liquid/Slurry	Lagoon
		Storage	
(A) Baseline Farm - MCF	1%	65%	90%
Baseline Methane Emission - MT/yr	1.9	120.3	166.6
(B) MT Combusted CH ₄ /Year ¹	185	185	185
(C) MT CO ₂ Utility Emission Offset (as CH_4)	32	32	32
(D) Refractory Emission ² @1% biodegradable VS	1.9	1.9	1.9
MT Methane Reduction/Year ³	0.0	-118.5	-164.8
as CO ₂	0	-2,488	-3,460
as C _{arbon} E _{quivalent}	0	-679	-944

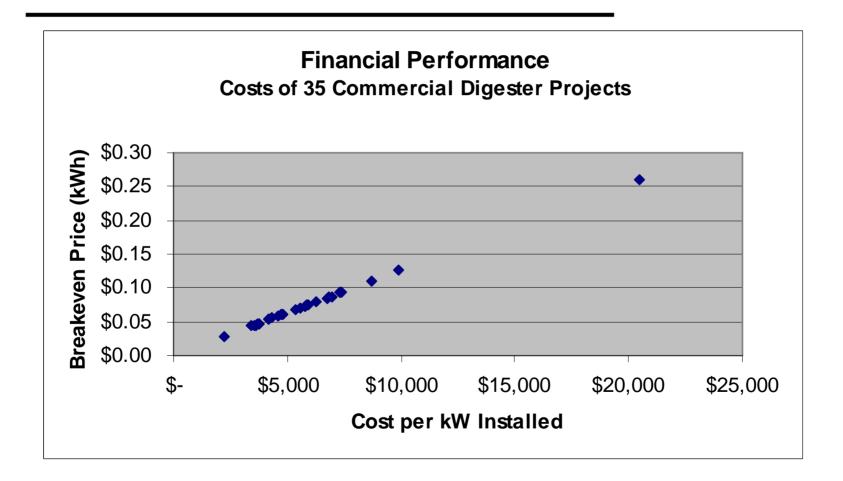
Notes:

¹ For this farm energy capacity is about 80 kW. Energy output is about 69 kWh/hr.

² Remaining biodegradale VS results in refractory emissions, assumed

³ Positive value indicates increase in emission

General Costs: Livestock Basis


Digester Type	Cost per Cow (1,400 lbs.)	
Attached Media	\$500-800	
Complete Mix	\$400-700	
Covered Lagoon	\$300-1,000	
Plug Flow	\$400-700	
Swine equivalents: 4 sows = cow;10 feeder pigs = cow		

Note: Cost assumes all manure is collected

Costs include engine gensets and separator (dairy systems)

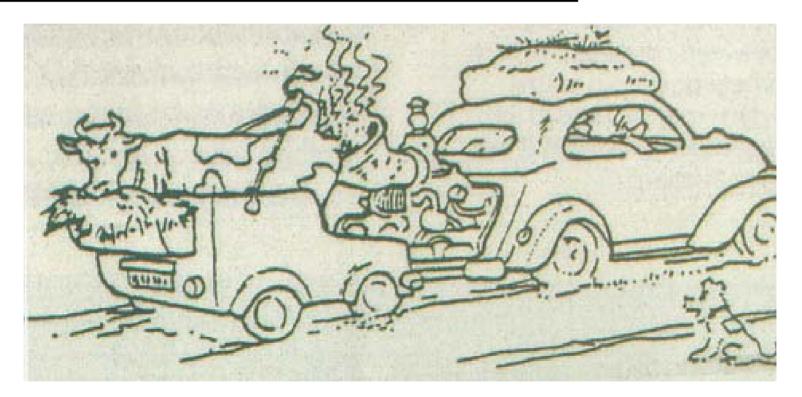
Cost Ranges can be Larger

Market Barriers

• Technical

- Reliability
- Available service, parts, and technical support
- Operational complexity

Policy


- Lack of environmental requirements or enforcement
 - Air and water quality
- Energy policy is renewable energy really desirable or only political?
 - Energy rates and interconnection
- Economic
 - Systems can be expensive but need to be affordable
 - Favorable energy rates
 - Financial assistance
 - Industry Codes of Practice labeling

And that's all for now...

See the AgSTAR Website at www.EPA.GOV/AGSTAR Thank You