

Reducing Methane Emissions from Livestock Waste for Energy Production and Pollution Control *A Global Perspective*

Kurt F. Roos AgSTAR Program U.S. Environmental Protection Agency

Presentation Overview

- Important considerations in waste management planning!
- What kinds of waste systems are there and how much methane do the emit?
- What are options that can reduce emissions?
- How do anaerobic digesters fit in and what makes them work?
- What benefits do they offer?
- What kinds of systems are there?
- How can gas be used?
- What types of project approaches are there?

Waste System Considerations

- Livestock waste are high strength materials, comparatively 10-100 times stronger than sewage
- Wastes can pollute and cause disease when improperly disposed
- Main polluting elements:
 - High organic fraction (BOD and COD)
 - Fish kills competes for dissolved oxygen
 - Odor attracts fly and other disease transmission vectors
 - Emits methane greenhouse gas
 - Contain nutrients nitrogen phosphorus and other
 - Causes eutrophication in surface waters
 - Can mutate plants when over applied or volatilized
 - Contain an array of bacteria, pathogens and other disease causing organisms
 - E. coli, Staph., Strep, Ascaris, etc.

- Livestock wastes are agricultural resources -Challenge is to cost effectively manage wastes with consideration to human, water, air, and land impacts

Wastes are Handled in Different Ways

Manura	Wate	er Added		Bedd	ing Added	
Manure			As Excreted			
Classification	Liquid	Slurry	Semi-Solid		Solid	
Handling Options	Pum	p	Scrape		Scrape and Sta	ck

Methane Emissions are Dependent on Waste System

Factors effecting methane emissions:

- 1) Manure type
- 2) Manure handling (liquid, slurry, semi-solid, solid)
- 3) Temperature and time

AMWS Systems and Methane Emission Factor by Climate Type									
	Manure Management System								
Climate	Lagoon	Liquid and Slurry	Solid Storage	Dry lot	Pit <1 month	Pit >1 month	Daily Spread	Digester	Other
Cool	90%	10%	1%	1%	5%	10%	0.10%	10%	1%
Temperate	90%	35%	1.50%	1.50%	18%	35%	0.50%	10%	1%
Warm	90%	65%	2%	5%	33%	65%	1%	10%	1%

Calculating Methane Reductions

Example: 500 cow dairy with varying baseline waste management systems in a warm climate

	Waste System Types		
	Daily Spread	Liquid/Slurry	Lagoon
		Storage	
(A) Baseline Farm - MCF	1%	65%	90%
Baseline Methane Emission - MT/yr	1.9	120.3	166.6
(B) MT Combusted CH ₄ /Year ¹	185	185	185
(C) MT CO ₂ Utility Emission Offset (as CH ₄)	32	32	32
(D) Refractory Emission ² @1% biodegradable VS	1.9	1.9	1.9
MT Methane Reduction/Year ³	0.0	-118.5	-164.8
as CO ₂	0	-2,488	-3,460
as C _{arbon} E _{quivalent}	0	-679	-944

Notes:

¹ For this farm energy capacity is about 80 kW. Energy output is about 69 kWh/hr.

² Remaining biodegradale VS results in refractory emissions, assumed

³ Positive value indicates increase in emission

Overview: Potential Methane Reducing Options

- Aeration energy is used to provide oxygen to meet oxygen demand of waste (1 lbs. BOD requires 1 HP)
 - energy intensive and very expensive
 - used as tertiary treatment in sewage to meet discharge requirement
 - residual solids become problematic
 - Can produce nitrous oxide much higher GWP
- Shifting liquid/slurry handling to solid manure handling
 - very limited because of scale
 - more economical to flush manure from confined production systems (pigs and dairy)
- Anaerobic digesters
 - consistent with farm waste handling objectives
 - oxygen demand satisfied anaerobically
 - produces biogas providing farm energy opportunities

What are Anaerobic Digesters?

Biological treatment/stabilization systems that collect and combust off-gases.

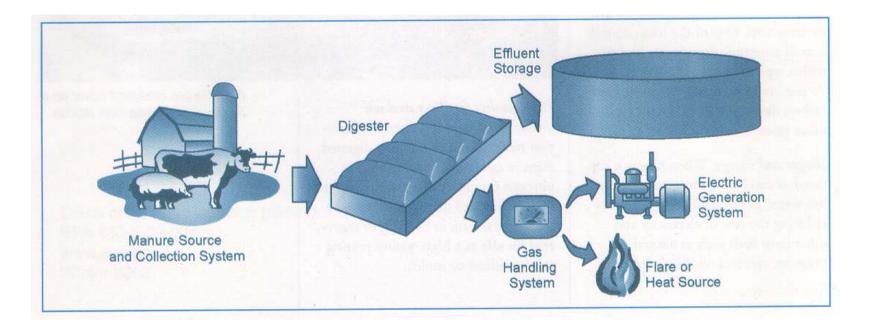
Offer Air Quality benefits

-Control odors from storage <u>and</u> field application -Reduces Greenhouse gases (methane) -Controls other emissions (H₂S, ammonia)

Offer Water Quality benefits

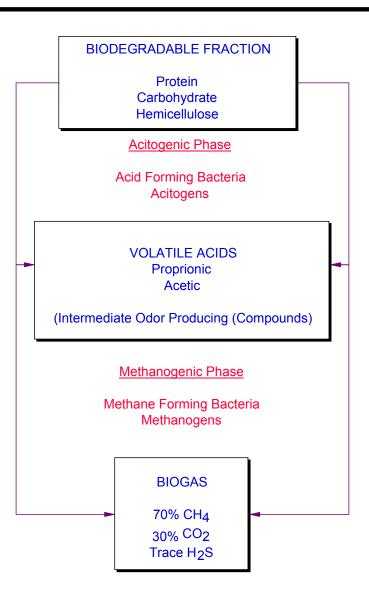
-Stabilize manure organics (BOD)

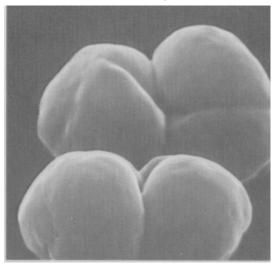
-Significantly reduce pathogens


-Provide nutrient management predictability and flexibility

Offer return on Investment......Energy revenues

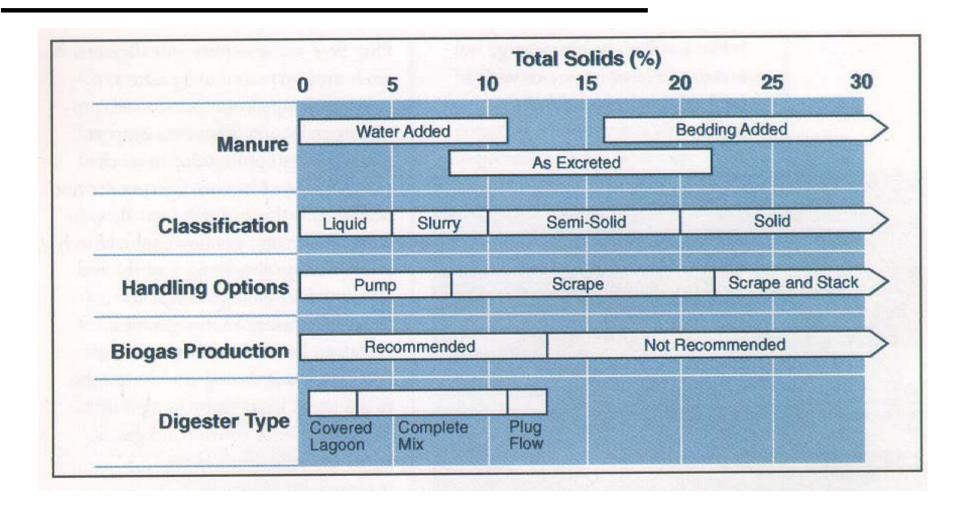
Anaerobic Digester Components


Digesters separate manure treatment from storage functions which can result in lower initial installation costs for new or expanding farms



What Makes Digesters work?

Anaerobic digestion is a biological process. It occurs in an oxygen free environment.



Methanogens

Digester Selection

Unheated Digesters

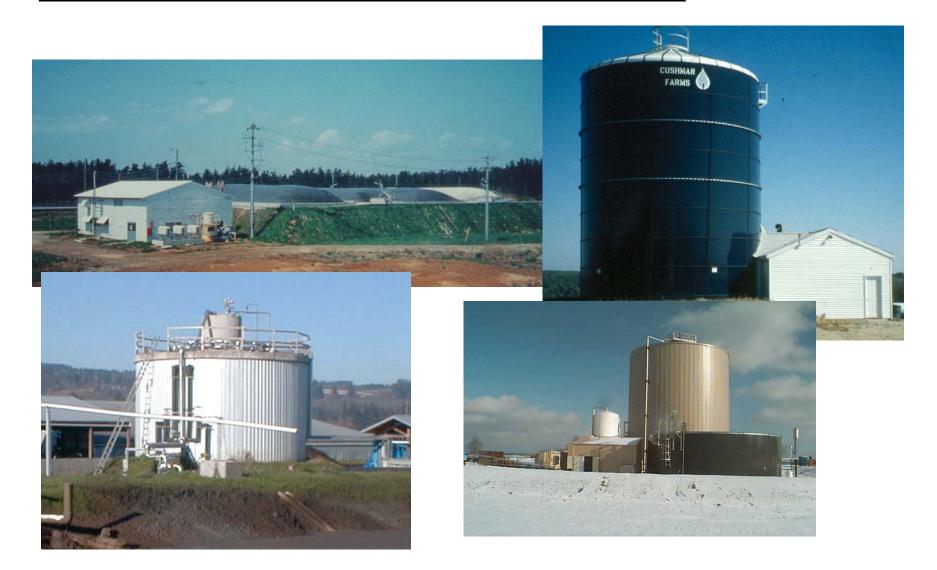
<u>Covered Lagoon Digester</u> Bank-to-Bank Cover

Modular Cover

Attached Media

More Unheated Digesters

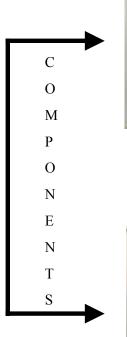
Small - Intermediate Scale Digesters



Heated (Mesophilic) Mixed Digesters

Heated (Mesophilic) Plug Flow Digesters

Used for Dairy only w/ Separation


Gas Use: Electrical Generation

Recip. Engines 40-150kW

Gas Handling and Transmission

Electric Metering

Gas Use: Heat

Boilers

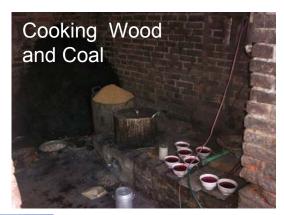
Forced Air

Hot Water Storage

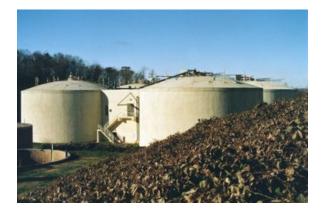
Hot Water Use

Gas Use: Flares

Odor Control and Greenhouse Gas Mitigation



Other Gas Use Options



Project Types

- On-Farm or Farm Scale: System is owned and operated by farm owner/manager
 - Currently the predominant project type in the U.S.
- <u>Regional or Centralized Digesters</u>: Off farm management and operation with a third party
 - Ideally located at a large energy (electric or heat) consuming source or interconnection point (feed mills or utility substation)

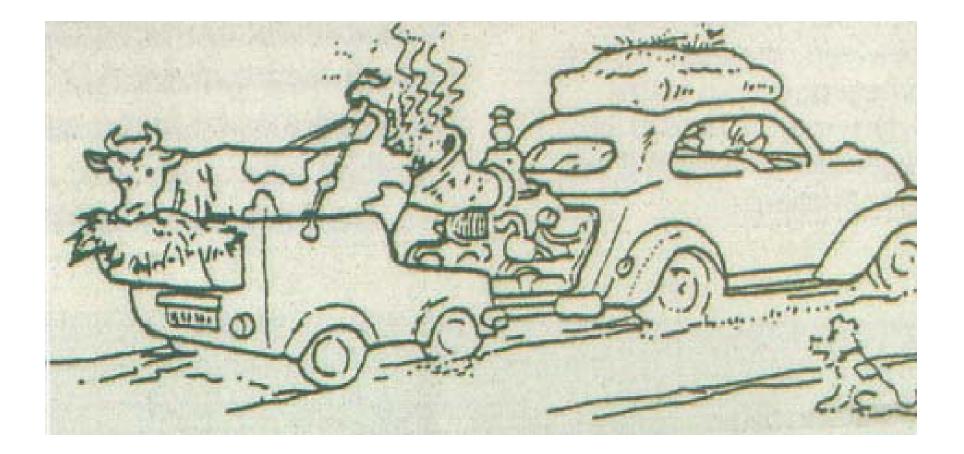
General Costs: Livestock Basis

Digester Type	Cost per Cow (1,400 lbs.)			
Attached Media	\$500-800			
Complete Mix	\$400-700			
Covered Lagoon	\$300-1,000			
Plug Flow	\$400-700			
Swine equivalents: 4 sows = cow;10 feeder pigs = cow				

Note: Cost assumes all manure is collected

Costs include engine gensets and separator (dairy systems)

Caution - Digesters Can Fail!



ENERGY AND POLLUTION PREVENTION

Gracias...

