

Tools to assist with evaluating CMM project opportunities in active mines and AMM resources

C. Özgen Karacan U.S. Geological Survey Geology, Energy and Minerals (GEM) Science Center Reston, VA, USA

The 30th GMI Coal Mines Subcommittee Meeting 16th UNECE Annual Session of the Group of Experts on Coal Mine Methane 3-4 March 2021

Methane in coal mines

- Coal mine methane (CMM) is a safety concern in active coal mines. It can be captured prior or during mining to:
 - Generate energy
 - Reduce environmental footprint
 - If not released to atmosphere as a "mine waste"
- After closure, significant amounts of methane (AMM) can continue accumulating in abandoned coal mines or in sealed areas as a "mine waste"
 - Add value to operations and help with their energy transition efforts
 - Reduce environmental and health impacts

Bottlenecks for techno-economic assessment

- Mine environment and mining geology are complex almost every situation is unique
- Expertise and understanding of emissions and gas accumulation in mines are limited – training needed
- Standard tools and approaches are not applicable for CMM and AMM resource assessments
 - Methane Control and Prediction Software (Karacan, 2010)
 - Probabilistic assessment methodology for CMM and AMM resources (Karacan and Warwick, 2019)

- Methane Control and Prediction (MCP) Software (Karacan, 2010)
 - A practical software built using prediction and classification artificial neural networks. Executable dynamic link libraries (DLLs) were developed using C++ to work with MS Access
 - Contains two main software model categories
 - These models have both deterministic and stochastic options to allow better control of design parameters
 - <u>https://www.cdc.gov/niosh/mining/works/coversheet1805.html</u> contains the software and links to technical papers related to its development and other information

Methane Control and Prediction (MCP) Software (Karacan, 2010)

METHANE CONTROL TOOL KIT FOR LONGWALL MINES			MCP-Methane Control and Prediction Model Methane Prediction Models
Version 2.0			Other U.S. Regions/Internationa Mine Ventilation Emission Prediction Operative Approach Ostochastic Approach
Before You Begin Help User's Manual Run The Models Exit SAFER + HEALTHIER + PEOPLET	MCP-Methane Control and Prediction Models	_	Degasification System Selection O Deterministic Approach
	MCP-Methane Control and Prediction	ion Model Methane Prediction Models O Specific U.S. Regions	Roadway Development Methane Inflow Prediction Roadways Not Shielded with Boreholes: O Deterministic Approach Roadways Shielded with Boreholes: O Deterministic Approach O Deterministic Approach
	 Desorbable Gas Content Prediction for Coals Coal Measure Rock Mechanical Properties Prediction 	Other U.S. Regions/International	Gob Gas Venthole Production Performance Prediction Option 1: Stochastic Model for Working Depths Up To 1000 ft: O Active Panel w/ Advancing Faces Completed Panels Option 2: Stochastic Model for Working Depth Exceeding 1000 ft: O Active Panel w/ Advancing Faces Completed Panels

Software can be used for a specific prediction or as part of a methodology to help with techno-economic analysis

Methane Control and Prediction (MCP) Software (Karacan, 2010)

Gob Gas Venthole Production Performance Prediction Model Output

Input Values:

Is Panel Completed?	Active	
Is There Face Advance?	Advancing	
% of Panel Completed:	80	
Linear Advance Rate (ft/day):	60	
Surface Elevation (ft):	1050	
Average Overburden (ft):	800	
Casing Diameter (inch):	7	
Distance of Slotted Casing Bottom to Coal Top (ft):	40	
Distance to Tailgate (ft):	250	
Distance from Panel Start (ft):	370	
Panel Length (ft):	11000	
Panel Width (ft):	1250	
Barometric Pressure (in Hg):	28.1	
Average Exhauster Vacuum (in Water):	-43	
Output:		
GGV Prod (scfm) 316.3122		
Methane Conc (%) 55.6583		
Re-Run Model Return to Menu	Help	

Response surface for flow rate for different inputs

- Probabilistic assessment methodology for CMM and AMM resources (Karacan and Warwick, 2019)
 - https://www.usgs.gov/centers/gemsc/science/assessing-emissions-active-and-abandonedcoal-mines?qt-science_center_objects=0#qt-science_center_objects
 - https://pubs.er.usgs.gov/publication/70203460
- A four-step probabilistic approach, with different data availability options, which aims to predict CMM and AMM resources and potential production timeframe
- Active project national and international collaborators are welcome to participate

- Probabilistic assessment methodology for CMM and AMM resources (Karacan and Warwick, 2019)
 - USGS methodology provides estimates of resources and production
 - Use of multiple tools: A recent application of USGS methodology for geologic assessment, MCP for production estimates and US EPA's CMM/AMM cash flow model for economic analysis enabled technoeconomic evaluation of mitigating emissions from a coal mine

Assessed area (left) and probabilistic prediction of AMM resource (right)

8

Thank you

C. Özgen Karacan

ckaracan@usgs.gov

