

Emissions Analysis of Changing the Aerobic Digestion of Excess Sludge from Wastewater Treatment Plants to Anaerobic Sludge Digestion in Chile

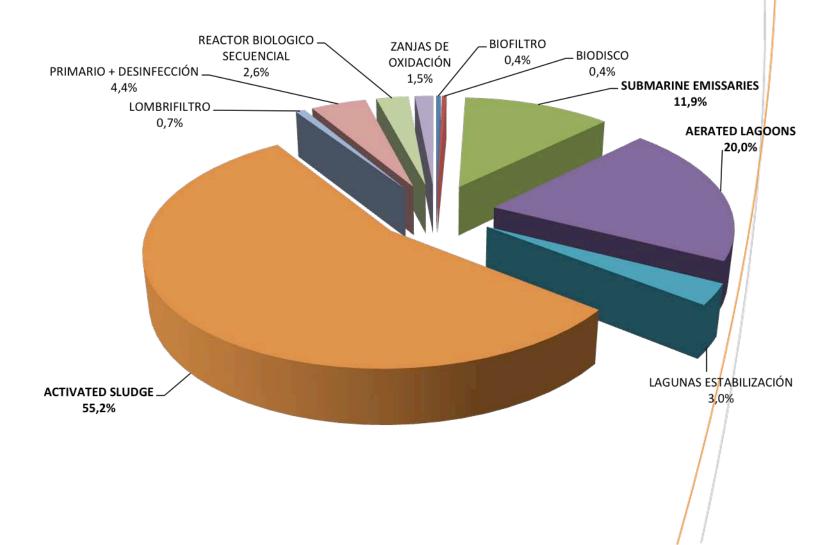
Christian E. Seal Oriana Holzapfel

> Florianópolis, Brazil March 2014

Agenda

- Background
- Study Description
- Data Collection and Analysis
- Results
- Future Work

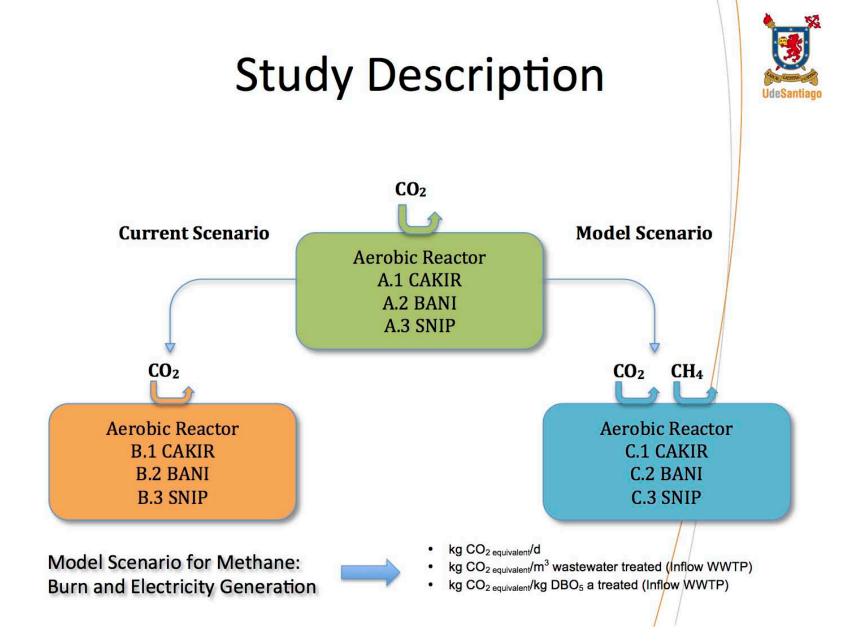
Background


• Chile

- Population: 16,634,603
- Two different sector for water utilities (Urban vs. Rural)
 - Urban Wastewater
 Treatment Coverage: 99,8%
 - Urban Tap water Coverage: 100%
 - Rural Tap water coverage approximately 99% (SAPR)
 - Rural Wastewater over 87% for sewer and 60% for wastewater treatment.

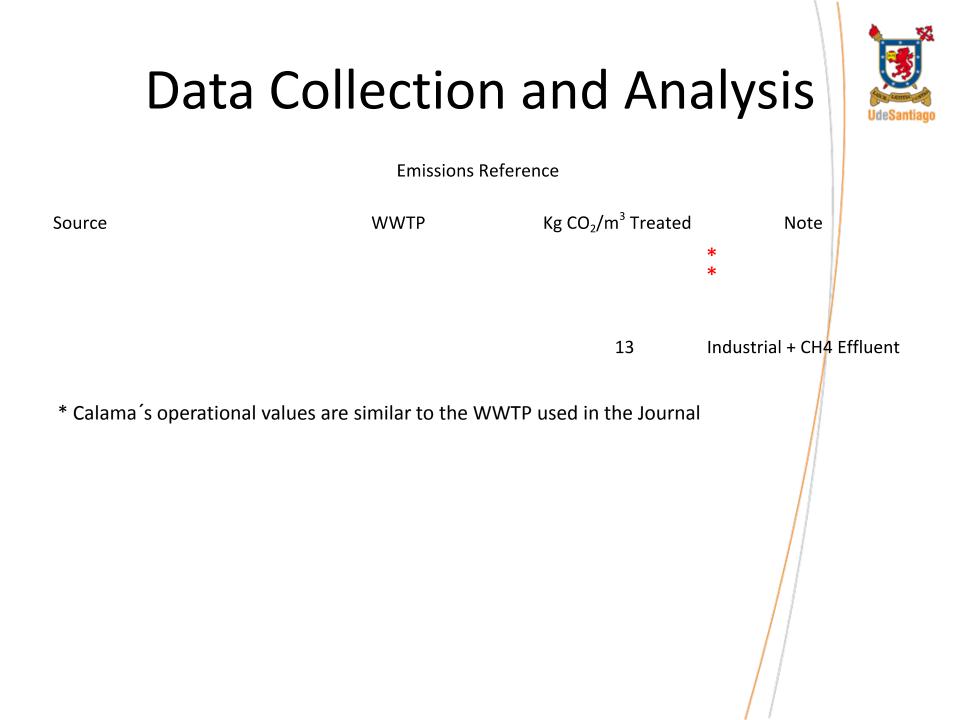
Urban Wastewater Treatment Technology

Study Description



- Objective: Evaluate the methane reduction of anaerobic sludge digestion as an alternative for the aerobic digestion of sludge.
 - Nine WWTP were study
 - Population between 57,679 to 333,271
 - Average flows between 80 to 930 L/sec
 - No economical analysis was performed

Data Collection and Analysis


	Region	Utility Name	WWTP Name	Communities Served	Population2012	
Γ		Tratacal S.A	Calama	Calama	165.337	
	111	Aguas Chañar	Copiapó	Copiapó	158.479	
North part of – Chile	VI	VI ESSBIO S.A Rancagua Machalí & Graneros		333.271		
	VI	ESSBIO S.A	San Fernando	San Fernando	57.679	
ſ	VII	NUEVO SUR S.A	Curicó	Curicó & Romeral		
	VII	VII NUEVO SUR S.A Linares Linares		Linares	80.522	
South part of	VII	NUEVO SUR S.A	Talca	Talca	190.622	
Chile	VIII	ESSBIO S.A	Chillán Chillán		200.315	
l	VIII	ESSBIO S.A	Los Ángeles	Los Ángeles	145.330	

Data Collection and Analysis

PARAMETER	INFORMATION SOURCE				
Wastewater Inflow	Statistical analysis of the average monthly flow (Linear regression)				
Inflow BOD ₅	Average BOD ₅ (weekly, didn't have a tendency)				
Outflow BOD₅	Average BOD ₅ (weekly, didn't have a tendency)				
Sludge Age	WWTP design value				
Y, aerobic reactor	0,6 (Metcalf y Eddy, 2003)				
kd, aerobic reactor	0,06 (Metcalf y Eddy, 2003)				
MLVSS, aerobic reactor	WWTP design value				
THR, aerobic reactor	WWTP design value				
TSS in the Effluent	Average TSS (weekly, didn't have a tendency)				
Sludge Age, Anaerobic Digester	10 (Metcalf y Eddy, 2003)				
Y, anaerobic reactor	0,04 (Cakir F. y Stenstrom M., 2005).M. , 2005)				
kd, anaerobic reactor	0,034 (Metcalf y Eddy, 2003)				

Data Collection and Analysis

Aerobic Reactor Emissions (Kg CO ₂ /d)	Aerobic Reactor Emissions (Kg CO ₂ /m3)
NI-R.AER REAL	AER REAL

Total Emissions for WWTP (Ton CO₂/year)

WWTP Calama Copiapo Rancagua San Fernando Curico Talca Linares Chillan Los Ángeles

nergy Source

h Methane Burning									

Emission Factor (Kg CO_2/m^3)

WWTP Calama Copiapo Rancagua San Fernando Curico Talca Linares Chillan Los Ángeles

ethane as Energy Source

- Aerobic Reactor + Energy Generation, can reduce greenhouse emissions and energy consumption for WWTP.
- Infiltration: The emission reduction by changing the digestion process was between 50 to 60 percent in the south part of Chile and 30 to 40 % in the north part of the country.
- Significant difference between the different models used (Snip doubles the other models)

Future Work

- Evaluate the Economical Impact
- Improve Kinetic Values for WWTP
- Consider Off-Road emissions (transport, sludge disposition...)
- Generate a National Greenhouse Gas Inventory for the Wastewater Treatment Sector for the different technologies.
- Estimate N₂O generated in the process or afterward

Thanks

 I would like to thanks the Superintendencia de Servicios Sanotarios (SISS) for there help with the project.

Reference

- Bani M., Yerushalmi L., Haghighat F. Chemosphere 78 (2010) 1085-1092. Estimation of greenhouse gas generation in wastewater treatment plants Model development and application.
- Bani M., Yerushalmi L., Haghighat F. Water Research 43 (2009) 2679-2687. Impact of process on greenhouse gas (GHG) generation by wastewater treatment plants.
- Bani M., August 2008. Estimation of Greenhouse Gas Emissions from Industrial Wastewater Treatment Plants. A Thesis in the department of Building, Civil, and Environmental Engineering. Presented in Partial Fulfillment of the requirements for the Degree of Master of Applied Science (Civil Engineering) at Concordia University Montreal, Quebec, Canada.
- Cakir F.Y, 2004. Anaerobic Treatment of Low Strength Wastewater. University of California Los Angeles. A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Civil Engineering.
- Cakir F.Y and Stenstrom M. Water Research 39 (2005) 4197-4203. Greenhouse gas production: A comparison between aerobic and anaerobic wastewater treatment technology.
- Holzapfel B. A, 2013 "Análisis de alternativas de tratamiento de lodos en plantas de tratamiento de aguas servidas como gestión ambiental para la reducción de emisiones de gases de efecto invernadero en Chile" Mater Degree Thesis PROGOA
- Snip L., August 2009-December 2009.Thesis Systems and Control. Wageningen University Agrotechnology and Food Sciences. Quantifying the greenhouse gas emissions of wastewater treatment plants.