

Universidade Federal do Rio de Janeiro Escola Politécnica, Depto. de Recursos Hídricos e Meio Ambiente

TRATAMENTO DE ESGOTOS E GERAÇÃO DE ENERGIA

Eduardo Pacheco Jordão, Dr. Eng.

GMI, fLORIANÓPOLIS 2014

O Desafio Urbano

Pessoas

Alimentos

Energia

Água

Produtos químicos

Esgotos

Emissões CO₂ NO_x SO_x

Resíduos Sólidos

O Desafio Urbano

Pessoas

Alimentos

Energia

Água

Produtos químicos

Esgotos

Emissões CO₂ NO_x SO_x

Resíduos Sólidos

O Desafio Urbano

Pessoas

Alimentos

Energia

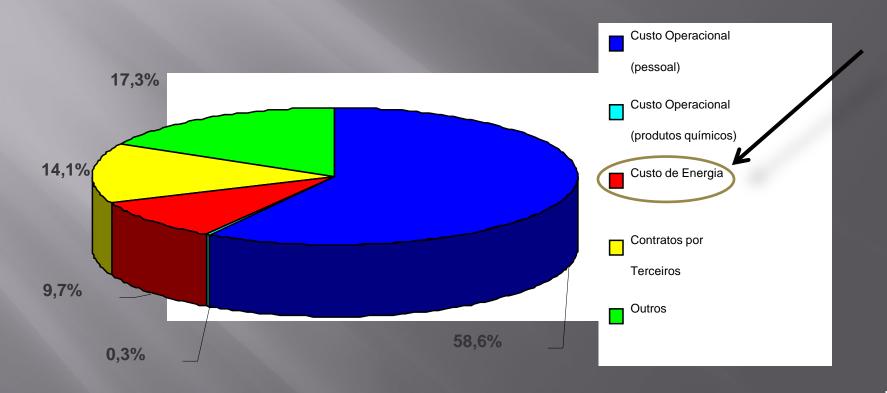
Água

Produtos químicos

Esgotos

Emissões CO₂ NO_x SO_x

Resíduos Sólidos


Sustentabilidade e Preocupações Ambientais

□ Poluição das águas → tratamento; reúso

- Destino final dos lodos -> biosólidos/uso agrícola
- Energia: geração de energia na ETE térmica e elétrica

Custos nas Empresas de Saneamento

Vamos gerar recursos?

- Os esgotos, o lodo, e o gás gerado em uma ETE podem se transformar em fonte de recursos
- Exemplos de Suécia, Japão, Estados Unidos,
 Inglaterra, Alemanha, China ...
- Tecnologias estabelecidas e emergentes
- A visão da ETE como um empreendimento industrial

Usos Benéficos na ETE

Produto	Uso benéfico
Biogás	Energia elétrica,
	térmica, combustível
Óleos e graxas	Biodiesel
Nitrogênio	Fertilizantes
Fósforo	Fertilizantes, estruvita
Mat. Inorgânico	Materiais construção
Comp. Orgânicos	Ácidos orgânicos
Lodo	Biosólidos

DIGESTORES ANAERÓBIOS E UASBS

É possível recuperar Energia a partir do Biogás gerado

Que tal aumentar a produção de biogás no digestor?

Aumentando a geração de gás

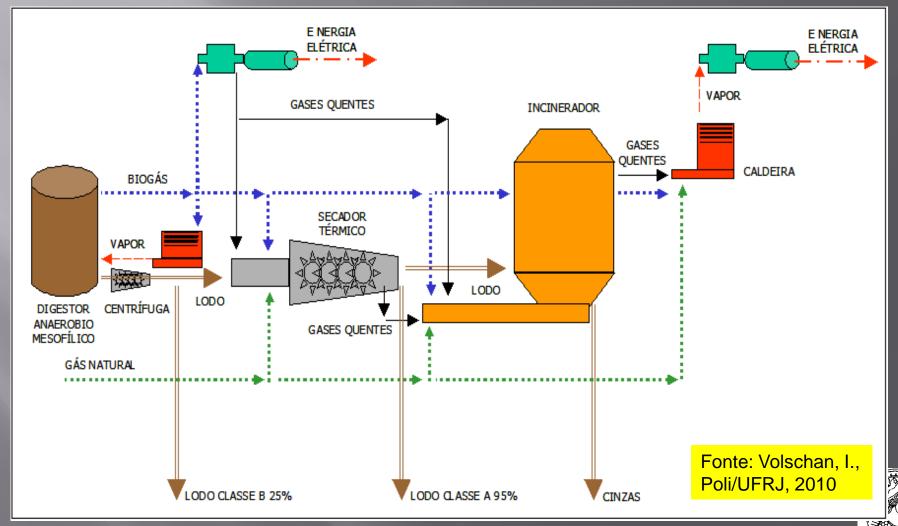
- Objetivo: maximizar a produção de biogás
- Métodos: quebra dos sólidos no lodo cru para facilitar a transformação em metano
- Processos: térmicos, mecânicos e químicos
- Hidrólise térmica: Cambi®, BioThelis®
- Físico-químicos: ultrasom, MicroSludge®, Crown®, lysis celular (mecânico/centrífuga)

Geração de Energia Térmica

- Caldeiras: produção de vapor ou de água quente
- Oxidação térmica (incineração)
 - Presecagem do lodo a 15 a 35%
 - Evaporação da fase líquida
 - Combustão dos sólidos voláteis
 - Controle da poluição atmosférica
 - Manejo das cinzas

Incineração

- Fornos de múltiplas bandejas ("Multiple hearth furnaces – MHF")
- Fornos de leito fluidizado ("Fluidized bed furnaces – FBF")
- Codisposição lodo-lixo (Viena)



Geração de Energia Elétrica

- Cogeração: grupos geradores de combustão interna (tipo Otto)
- Turbinas a gás (ciclo Brayton)
- Microturbinas: 50 100 kW
- Células combustíveis: 200 kW 1MW
- Remoção de contaminantes no biogás: umidade, gás sulfídrico e siloxanos

Estabilização - Secagem Térmica - Incineração

ETE San Fernando, Medellín

Recuperação de Energia: ótima experiência na Colombia

• Energia elétrica

calor

Combustível

lodo

ETE San Fernando, Medellín, recuperação de energia

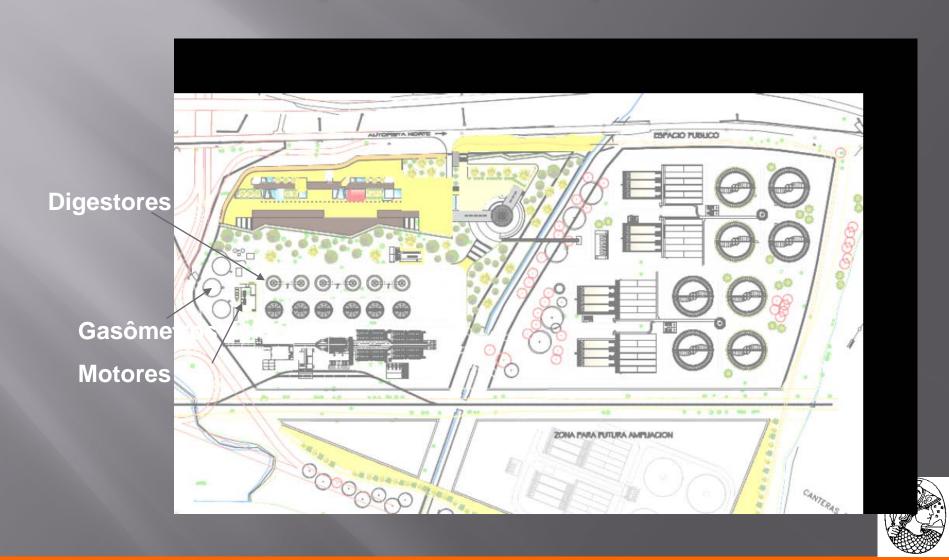
Energia do biogás 2.081 kWh/h

Energia para outros equipamentos 510 kWh/h

Energia elétrica gerada 710 kWh/h

Energia térmica gerada 661 kWh/h

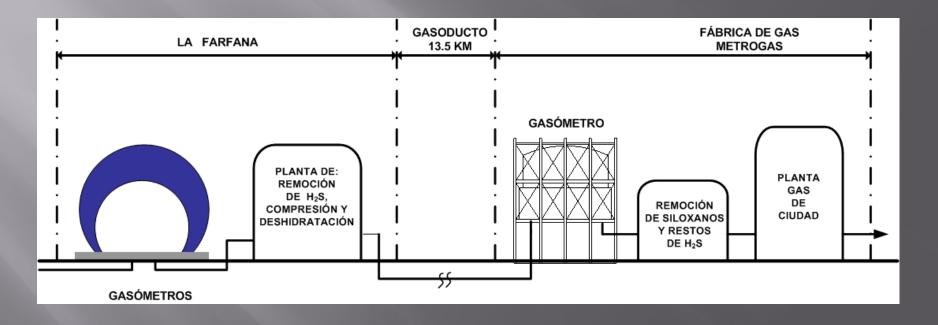
Usado 247 kWh/h


Perdido

414 kWh/h

Equipamentos Operação 200 kWh/h

ETE Bello, Medellin, Colombia

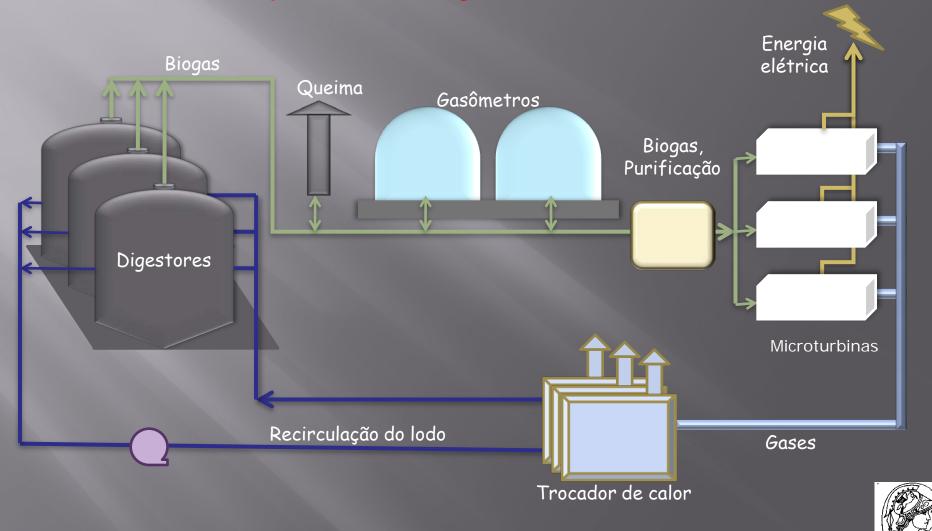

Enorme experiência no Chile

- La Farfana, 9 m³/s
- Santiago, Chile
- \odot 30 40 MM³/ano
- Energia para a ETE
- Calor para os digestores
- Gás para a cidade (Metrogas)

Projeto La Farfana - Metrogas (US\$ 5 milhões)

Queimar o Gás x Recuperar Energia

ETE Alegria, RJ, 5 m3/s


Recuperação de Energia: em reatores UASB e em digestores convencionais de ETEs

- ETE Arrudas, Sabará (RMBH)
- Lodos Ativados, com recuperação de energia a partir do biogás dos digestores.

Recuperação de Energia na ETE Arrudas, BH

ETE Arrudas, BH Prédio de geração de energia

Purificação do biogás, ETE Arrudas

Alimentação turbinas, ETE Arrudas

Alimentação turbinas, ETE Arrudas

Trocador calor gás-água

Trocador de calor água-lodo

Bombas trocador de calor água-lodo

Recuperação de Energia

Gás Poder Calorífico kJ/m³

Propano comercial 45.800

■ Butano comercial 44.600

■ Gás natural 37.300

■ Metano 35.800

■ Gás da digestão (*) 22.400

(*) Para 65% de metano no biogás

Geração de Energia

- Poder Calorífico (biogás) = 22.400 kJ/m³
- 5 a 20 L gás/pessoa.dia (ETE convencional)
- Para ETE de 200.000 hab (*) se poderia gerar:
 - $0.020 \times 200.000 = 2.000 \text{ m}^3 \text{ biogás/dia}$
 - $-2.000 \times 22.400 = 4.5 \times 10^7 \text{ kJ/d} =$ $= 1.6 \times 10^{10} \text{ kJ/ano} = 4.6 \times 10^6 \text{ kWh/ano} \text{ (bruto)}$
- (*) com a máxima produção de gas

Consumo de Energia na ETE

Consumo típico ~ 320 kWh/1000 m³

- Ex: 200.000 hab. x 150 L/hab.d =
 - $= 30.000 \,\mathrm{m}^3/\mathrm{d}$
- □ Consumo energia ~ 320 kWh/1000 m³ x
 - x 30.000 m³/d x 365 d/ano
- Energia, consumo ~ 3,5 x 10⁶ kWh/ano

Geração x Consumo de Energia

- □ Produção máx. de gás ~ 4,6 x 10⁶ kWh/ano
- Produção média gás ~ 2,3 x 10⁶ kWh/ano
- Produção mín. de gás ~ 1,2 x 10⁶ kWh/ano
- Energia, consumo $\sim 3.5 \times 10^6 \text{ kWh/ano}$

(estimado para ETE de 200 mil hab.)

Consumo de Energia na ETE

Consumo típico ~ 320 kWh/1000 m³

- Aeração = 52%
- Fase sólida =30%
- Recalque do afluente = 12%
- Bombeamentos internos = 3%
- Remoção de nutrientes aumenta os custos de energia

Pensar alto: podemos fazer o Saneamento sustentável?

- Estão aí novas tecnologia
 - Lodo para biogás: Hidrólise Térmica; Destruição celular
 - Lodo para syngás: gaseificação
 - Lodo para óleo: pirólise
 - Lodo para uso agrícola: controle e gestão
- Soluções sustentáveis para lodo e gás.

Processos de recuperação de energia do biogás

- -Objetivo: gerar o máximo possível de biogás
- -Hidrólise Térmica
- -Destruição físico-química das células

Hidrólise Térmica

- Aumenta a produção de biogás e reduz o volume de lodo para disposição final (aumenta a destruição de SV).
- <u>Processo CAMBI:</u> Noruega, Dinamarca, Reino Unido
- Processo BioThelys: França

<u>Destruição físico-química</u> das células

- Destrói a membrana celular dos microorganismos no lodo, reduzindo o tempo de digestão, aumentando a eficiência de redução de SV, e a geração de biogás.
- <u>Processo Micro-SludgeTM</u>: Vancouver (Canada) e Los Angeles (USA); 2 unidades. Já desativadas.
- <u>Ultrasom:</u> produz cavitação, implosão de bolhas de gás, quebra das membranas das células das bactérias. Europa (Alemanha).
- Processo de desintegração Crown: cavitação, Alemanha. Aumento dao biogás em até 34%.
- <u>Processo Baker</u>: desintegração das células por centrifugação. Alemanha; aumento de ~25% na geração de biogás.

Cogeração de Calor e Eletricidade

- <u>- Cogeração</u>: Motor-Gerador de Combustão
 Interna (com uso do biogás do digestor)
- Turbinas: microturtinas e turbinas
- - Células combustíveis

Motor-Gerador de Combustão Interna

- Necessário tratamento do biogás para redução de umidade, gás sulfídrico e siloxanos.

- Energia térmica: eficiência ~45-50%
- Energia elétrica: eficiência ~30-35%
- Energia global: eficiência ~75 85%

Turbinas

Microturbinas:

- 50 150 kW (produz corrente alternada)
- eficiência elétrica ~27%
- eficiência global ~70 90%
- necessário tratamento para reduzir umidade e siloxanos

Turbinas:

• eficiência elétrica ~30 - 35%

Células Combustiveis

- -produzem energia elétrica diretamente através de uma reação eletroquímca com uso de hidrogênio (do biogás) e oxigênio (do ar).
- vários fornecedores comerciais.
- eficiência global: 47 87%
- nos USA de 200 kW a 1 MW
- custo capital elevado, custo operacional baixo

Sustentabilidade

- Uso do lodo digerido e seco como insumo na agricultura.
- Controle da qualidade do lodo gerado.
- Aspectos de legislação ambiental e agrícola.

- Aproveitamento do biogás gerado para geração de energia elétrica.
- Uso da energia gerada na própria ETE.
- Redução da liberação de gases de efeito estufa na atmosfera.

Obrigado

Eduardo Pacheco Jordão, Dr.Eng. jordao@poli.ufrj.br

