Co-generation Utilizing Biogas from Sludge Treatment

Michael Theodoulou – Suez Water Technologies & Solutions

April 17, 2018
Presentation Outline

• Capturing Energy Value in Sludge
• Utilization of Biogas Generated from Sludge Treatment
• Case Study: Cd. Juarez
• Additional Co-generation References
• Summary
Capturing the Energy Value in Sludge – Target Energy Neutrality

- **Context:**
 - Energy potential in Sludge represents twice the electrical consumption in treatment plants
 - Sludge treatment represents *15% of the total electrical consumption in the plant*
 - Digestion produces **biogas**, which can have a significant impact on the plant Energy balance

- **Objectives:**
 - Implement sludge treatment to limit Energy consumption
 - Aspire to achieve Energy Neutrality
Utilization Options for Biogas from Sludge Treatment

- **Renewable Heat Source**: Heat recoverable and usable within digestión/drying processes (reducing the need for import natural gas)

- **Co-generation (CHP)**: Simultaneous Heat & Power Production

- **Biomethane Production**: Upgrade biogas to Biomethane for pipeline injection or transformed into biofuel to offset diesel
Utilization of Biogas from Sludge Treatment – Co-generation

- Simultaneously produces electricity & heat from biogas
- Renewable Heat is used for digester & building heating
- **Renewable (Green) electricity is either used within the plant to offset import, or sold to the grid**

Combined Heat & Power

- 1 kg of VS
- 1 Nm³ biogas
- 6.3 kWh

Electrical Efficiency: 30-42%
Thermal Efficiency: 35-45%

- **Electricity:** 2.2 kWhe
- **Heat:** 1.8 kWht
Biogas Upgrading to Biomethane

- Biogas Upgrader: membrane
- Compliant biomethane
- Non-compliant biomethane
- Off-gas
- Moisture traps
- H₂S and VOC treatment
- Compressor
- Non-compliant biomethane + off-gas

Co-generation Utilizing Biogas from Sludge Treatment
Methanis Biogas Upgrading membrane plant

- **H₂S and VOC treatment**
- **Membranes skid**
- **Booster**
- **Compressor**
- **Dryer**
Utilization of Biogas from Sludge Treatment – Biomethane

- Stage 1: Conditioning Biogas
- Stage 2: CH_4 recovery rate > 99.3%
- Stage 3: To the atmosphere
 - Offgas %CH_4<0.5%
- To pipeline injection: 96-98% CH_4

The CO2 is separated from the methane
Case Study: Co-Generation at Cd. Juarez
Components of Co-Generation

- Anaerobic Digestion
- Biogas Conditioning
- Biogas
- CHP
- Renewable Heat
- Renewable Electricity
- Utilization within WWTP
- H₂S & Moisture Removal

Co-generation Utilizing Biogas from Sludge Treatment
Contractual Scheme – Pegged on existing BOT Contract

- Biogas Usufruct granted to Suez
- Auto-consumption Permit
- Instruction Letter + Lease Agreement Suez / JMAS
- BOT-type SERVICE CONTRACT (CPS)
- BOT-TARIFFS (T1, T2, T3)
- Cogen assets Transfer at the term of the Lease
- O&M Contract TARIFFS (T2, T3)
- WTP Operator & Cogen Developer
- INVESTMENT & FUNDING Structuration
- CONSTRUCTION (EPC)
- OPERATION & MAINTENANCE
- OWN STAFF
- IRREVOCABLE & EXCLUSIVE OPERATOR

COGENERATION
Combined Heat & Power Units

- **Fuel** = Biogas (Desulfurized & Dried) (60-64% methane)
- **Electrical Output**: 2x 604 kWe @ 1,800 rpm (Net, altitude corrected)
- **Continuous Service**: 24 hrs/day, 330 days/yr (>90% availability)
- **Useful Life**: 234,000 effective hours (26 years)
Resultant Performance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biogas Production</td>
<td>Nm³/d</td>
<td>13,130</td>
</tr>
<tr>
<td></td>
<td>Nm³/h</td>
<td>547</td>
</tr>
<tr>
<td>Potential Electricity Generation</td>
<td>kWhe</td>
<td>948</td>
</tr>
<tr>
<td>Number of CHPs</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>CHP Capacity (per unit)</td>
<td>kWhe</td>
<td>604</td>
</tr>
<tr>
<td></td>
<td>kWht</td>
<td>879</td>
</tr>
<tr>
<td>Actual Renewable Energy Generation</td>
<td>kWhe</td>
<td>900</td>
</tr>
<tr>
<td></td>
<td>kWht</td>
<td>1,313</td>
</tr>
<tr>
<td>Percentage of Biogas Utilized in CHPs</td>
<td>%</td>
<td>100</td>
</tr>
</tbody>
</table>

- Commissioned September 2016
- Co-generation Utilizing Biogas from Sludge Treatment
Sample of Additional Co-generation References - Suez

Avonmouth (Bristol, UK)
- 5.75 MW electricity generation
- Co-located digestion of sludge & food waste
- Energy Positive WWTP
- Export > 1.5 MW to grid

<table>
<thead>
<tr>
<th>Installation</th>
<th>Location</th>
<th>Production (kWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gabal</td>
<td>Egypt</td>
<td>11,600</td>
</tr>
<tr>
<td>Mapocho</td>
<td>Chile</td>
<td>9,000</td>
</tr>
<tr>
<td>Acheres</td>
<td>France</td>
<td>7,600</td>
</tr>
<tr>
<td>As Samra</td>
<td>Jordan</td>
<td>6,000</td>
</tr>
<tr>
<td>Avonmouth</td>
<td>UK</td>
<td>5,750</td>
</tr>
<tr>
<td>Rhitala</td>
<td>India</td>
<td>3,000</td>
</tr>
<tr>
<td>Gdansk</td>
<td>Poland</td>
<td>2,500</td>
</tr>
<tr>
<td>Tripoli</td>
<td>Lybia</td>
<td>2,400</td>
</tr>
<tr>
<td>La Gabia</td>
<td>Spain</td>
<td>1,900</td>
</tr>
<tr>
<td>Marseille</td>
<td>France</td>
<td>1,900</td>
</tr>
<tr>
<td>Bordeaux</td>
<td>France</td>
<td>1,200</td>
</tr>
</tbody>
</table>
Summary

- Wastewater Sludge holds energy potential that can be captured to reduce the energy consumption
- Utilization of Biogas Generated from Sludge Treatment can be used beneficially both to create heat & electricity, as well as renewable natural gas
- Co-generation at Cd. Juarez was successfully implemented in 2016 creating 900kW of renewable electricity and 1,313 kW of renewable heat to offset the parasitic demands of the plant
Thank You

Michael.Theodoulou@suez.com